• Title/Summary/Keyword: underground wireless system

Search Result 68, Processing Time 0.026 seconds

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

Development and Performance Evaluation of Real-Time Wear Measurement System of TBM Disc Cutter (TBM 디스크 커터 실시간 마모계측 시스템 개발 및 성능검증)

  • Min-Seok Ju;Min-Sung Park;Jung-Joo Kim;Seung Woo Song;Seung Chul Do;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.154-168
    • /
    • 2024
  • The Tunnel Boring Machine (TBM) disc cutter is subjected to wear and damage during the rock excavation process, and the worn disc cutter should be replaced on time. The manual inspection by workers is generally required to determine the disc cutter replacement. In this case, the workers are exposed to dangerous environments, and the measurements are sometimes inaccurate. In this study, we developed a technology that measures the disc cutter wear in real time. From a series of laboratory tests, a magnetic sensor was selected as the wear sensor, and the real-time disc cutter measurement system was developed integrating wireless communication modules, power supply and data processing board. In addition, the measurement system was verified in actual TBM excavation circumstances. As a result, it was confirmed that the accuracy and stability of the system.

Environmental Sensor Monitoring System of Subway Stations Using USN (USN을 이용한 지하철 역사 대기환경 모니터링 시스템)

  • Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.60-66
    • /
    • 2011
  • The$PM_{10}$ concentrations in the underground should be monitored for the health of commuters on the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation are measuring several air pollutants regularly. In this paper, the reliability of the instruments using light scattering method is improved with the help of a linear regression analysis technique to measure the $PM_{10}$ concentrations continuously in the subway stations. In addition, an USN monitoring system is implemented to display and record the data of $PM_{10}$, CO/$CO_2$, humidity, and temperature. To transmit and receive these measured sensor data, 2.4GHz Zigbee, 424MHz wireless communication, and CDMA M2M method are applied and evaluated.

A Study on Quality and Economical Analysis of B-WLL and Optical Transmission Systems for Substituting M/W Relay System (M/W 중계장치 대체를 위한 B-WLL 및 광전송 장치의 품질과 경제성 분석에 대한 연구)

  • Suh Kyoung-Whoan;Choi Yong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.809-819
    • /
    • 2004
  • In this paper, in order to exclude the expansion of M/W relay frequency or its new frequency assignment possibly, we analyzed a possibility of substituting M/W system by B-WLL or optical fiber network regarding service quality and economical points. To define the target of service quality, pre-condition and analysis method for the selected media have been derived to compare each other. E1 transmission with BER 10$^{-1}$ was chosen as a reference capacity, and service distance was calculated f3r the selected media as a function of availability. Also from the economical point we considered 3 systems such as optical fiber, M/W, and B-WLL based upon basic system structure, and analyzed them for various line configurations of fiber optic and B-WLL according to service period, system capacity, transmission distance, and data rate. It was confirmed that B-WLL can provide quality of service with 99.999 % availability within 1.6 km cell radius, and for optical fiber substitution, the leased fiber conduit on an electric pole is more economical than M/W system irrespective of service period, but in case of directly digging for underground conduit, it turned out ineffective regardless of cabling duct types.

A Empirical Study on Applying Ubiquitous Technology for Gas Safety Management (U-기반 가스안전관리의 기술을 적용을 위한 실증적 연구)

  • Oh, Jeong-Seok;Choi, Kyung-Suhk;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • The ubiquitous technology is capable of innovating various area to constructing intelligent and network to all objects. This technology can construct network infrastructure to facilities for applying legacy industry and need to develop intelligent service that analyze context-aware through network. This paper derive and propose the introduction range of ubiquitous technology, which should be testified and analyzed network, and studied the detection and analysis of information for managing gas facilities. We investigate the current status of gas facilities and automatic reading system, testing and analyzing wireless personal area network and mobile communication by scalability, self-configuration, connection in underground. Furthermore, we propose modelization method for intelligent service and derive the introduction range for applying ubiquitous technologies for managing gas facilities.

  • PDF

AprilTag and Stereo Visual Inertial Odometry (A-SVIO) based Mobile Assets Localization at Indoor Construction Sites

  • Khalid, Rabia;Khan, Muhammad;Anjum, Sharjeel;Park, Junsung;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.344-352
    • /
    • 2022
  • Accurate indoor localization of construction workers and mobile assets is essential in safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry (SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the moving assets or workers from the initial starting point. This relative position is transformed to an absolute position when AprilTag placed at various entry points is decoded. The proposed solution is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor moving forklift is estimated. The results show accurate localization of the moving asset within any indoor or underground environment. The system can be utilized in various use cases to increase productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing what and where.

  • PDF

Research on WINC expansion numbers to improve the accessibility of mobile web service (모바일 웹 서비스 접근성 향상을 위한 WINC 확장 번호에 대한 연구)

  • Sim, Keun-Ho;Ko, He-Eae;Kim, Jong-Keun;Zhao, Meihua;Lim, Young-Hwan
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • For the past few years, unlike wireless widespread United States and Japan, expensive cost and platform of the mobile web carrier underground and self-centered made achievement of domestic mobile web market sluggish. Nowadays, more and more people pay attention to the mobile web service because of the increased quality of wireless internet, development of mobile device and variety of the flat-rate payment system. However, another big problem is that mobile web is too hard to use. Also, the poor content of mobile web service is an extremely serious problem. In this paper, we put forward a new method for easy to access mobile web service which is use WINC expansion numbers and users can use these numbers to shit their own website. Along with the benefits of purchase WINC number general users are able to make website and control their website at less time and energy.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.