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Abstract: Accurate indoor localization of construction workers and mobile assets is essential in 

safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based 

RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor 

fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning 

methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry 

(SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the 

moving assets or workers from the initial starting point. This relative position is transformed to an 

absolute position when AprilTag placed at various entry points is decoded. The proposed solution 

is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor 

moving forklift is estimated. The results show accurate localization of the moving asset within any 

indoor or underground environment. The system can be utilized in various use cases to increase 

productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of 

man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is 

doing what and where. 
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1. INTRODUCTION 

The number of worker safety-related accidents reported from the construction industry has been 

a global concern [1]. The construction workforce accounts for 7% of the global workforce, which 

reports 30% of the accidents [2]. The US Bureau of Labor Statistics reported a 2% increase in fatal 

occupational injuries in 2019, the largest annual number reported since 2017 [3]. Many 

construction accidents are mainly reported due to falls from height, being struck by an object, 

electrocution, and struck between or in equipment. Furthermore, approximately 200,000 workers 

have disabled annually because of work-related injuries at the construction site [4]. Due to the 

complex, confined, and dynamic working environment at the construction site. As construction 

work progresses, new hazards occur; manual hazard recognition monitoring is almost impossible 

for the workers and supervisor on site [5], [6]. Scientists reported that roughly 50% of the hazards 

at the construction are unrecognized[7], [8]. As a result, the workers are exposed to unseen risks 

and potential injuries. Safety training programs have been designed and conducted to improve the 
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ability of the works to identify the potential risk at the construction site [9]. Although beneficial, 

those training methods have not successfully minimized the unseen risk to the desirable levels. 

Furthermore, according to Cormwell et al. [10], only 10-15% of training investment result in 

favorable workplace results. 

Recent research has shown personalized training approaches to increase risk awareness among 

construction workers[9], [11]. Martin et al. [12] conducted a five-hour safety training session on 

fall prevention, dust exposure, leadership, safety planning, and communication for 118 workers. 

After six months, safety managers conducted an assessment survey, which revealed a considerable 

improvement in effective communication among workers and greater adherence to safety laws to 

reduce the risk of accidents. However, there is a significant disparity in the number of safety 

managers to workers; therefore, educating individual personnel is impractical. 

Even if aforementioned challenges are resolved, workers might still fail to identify certain unseen 

hazards. According to Albert et al. [8] and Jeelani et al. [7] , apart from the safety training, workers 

still fail to recognize one-fourth of the risk associated with safety. Risk recognition is a visual 

process that can be affected by factors such as complex and dynamic layout, occlusion, blind zone, 

and illuminance etc. [13], [14]. Therefore, only training cannot recognize these unseen risks that a 

worker is exposed to. Hence, there is a need for automation techniques to identify the workers 

positioning at the complex and dynamic construction site and the risk associated with it. 

2. RELATED RESEARCH WORK 

Existing research on construction safety has boosted worker safety and visibility for emergency 

response by deploying wireless intelligence. Indoor and underground working environments are 

global positioning systems (GPS) [15], [16] denied. This led to the development of wireless 

technologies like wireless local area networks (WLAN)[17], radio frequency identification 

(RFID)[18], ultrawideband (UWB)[19], Bluetooth (BLE)[20], Ultrasound[21], etc. However, these 

require dedicated hardware installation, which is expensive for large-scale environments. Vision-

based real-time locating systems (RTLS) are also used in navigation; however, it is inaccurate as it 

depends on pre-installed cameras that do not handle occlusion and need intensive computations for 

Structure for Motion (SfM). 2D LIDAR simultaneous localization and mapping (SLAM)[22] and 

visual SLAM[23], referred to as the process of position and orientation estimation w.r.t. 

surrounding using LIDAR and camera, simultaneously map the environment. However, 2D LIDAR 

SLAM needs the input of initial pose estimations and hence is not reliable when there is no prior 

pose estimation information. Whereas vSLAM is vulnerable to variations in illumination and 

motion blur when the camera moves too fast. 

The infeasibility in the usage of standalone sensors led to the senor fusion methods, which couple 

multiple sensors to mitigate standalone weaknesses. Georgy et al. [24] integrated MEMS-based 

inertial measurement units (IMU) with GPS and used Mixture Particle Filter such that the former 

limits the positional error in the latter during its outage. However, this approach fails when GPS is 

unavailable in an indoor environment or is jammed. Jiang et al. [25] used cameras in visual 

odometry (VO) as it is relatively cheaper than GPU and IMU. VO is a part of vSLAM, which 

analyzes a sequence of images to determine the location and orientation of the camera. Various VO 

algorithms have been tested on monocular and stereo cameras, where stereo VO reports higher 

accuracy than monocular VO. To counter the high scene dependence and computation complexity 

of standalone VO, Li et al. [26] proposed visual-inertial odometry (VIO), which integrates IMU 

with a monocular camera as visual and inertial odometry complement each other. Inertial Odometry 

(IO) has high data rate, is environment independent and gravity aware; however, it has high 

positional drift due to double integration of accelerometer data. This drift is corrected by the camera, 
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where stereo camera corrects the drift better than monocular cameras due to additional depth 

information.  

In recent years, the potential of fiducial landmarks is identified for indoor localization and 

navigation. Nahangi et al. [27] proposed a method for automated localization of UAVs in GPS-

denied environments by employing AprilTags linked to the 3D coordinates of the building. These 

coordinates are the ground truths known from the building information model (BIM). The UAV 

localizes itself as long as the AprilTags are within its camera line of sight. Kayhani et al. [28], [29] 

improved this tag-based localization by using an extended Kalman filter (EKF) and switching to 

IMU when UAV misses AprilTags. However, being prone to positional drift, IMU doesn’t serve 

as a reliable system, and hence more robust VIO systems need to be integrated. Kayhani et al. [30] 

integrated a more robust VIO system with AprilTags presenting a system with high accuracy, and 

root mean square error within 2-5cm. However, in tag-blind zones, the system accuracy relies on 

odometry-based estimates. Therefore, a more robust, and reliable odometry method of SVIO is 

proposed to be integrated with AprilTags. Hence, not only providing better accuracy but also 

decreasing the number of tag installation in the construction site. 

3. OBJECTIVE AND SCOPE 

This study proposes a conceptual framework of an integrated model of AprilTag fiducial markers 

and Stereo Visual-Inertial Odometry (A-SVIO) for accurate indoor localization of mobile assets. 

AprilTag is a 2D bar code style tag allowing complete 6-DOF localization of features from a single 

image. It also enables the transformation of the SVIO based positional coordinates to the 

coordinates relative to decoded AprilTag ground truth position. The proposed solution helps the 

construction sites to prevent collisions, bring visibility into emergency mustering and provide lone 

worker safety. While the solution prioritizes safety, it also boosts efficiency and productivity at 

construction sites. The proposed solution is tested on a virtual environment created on NVIDIA 

ISAAC SIM utilizing ISAAC SDK for moving asset localization and ISAAC Sight to visualize 

results. 

4. PROPOSED FRAMEWORK  

The proposed framework of A-SVIO is illustrated in Figure 1. This framework is implemented 

in the virtual simulation environment of NVIDIA ISAAC SIM. A small warehouse environment is 

created in this study. AprilTags linked with localization coordinates are assumed to be installed in 

the entrance points of this indoor working environment. In a practical scenario, these tags can be 

generated by linking them with the coordinates in the BIM model and then installed on that position 

as a fiducial landmark. For performing SVIO, an Intel RealSense Stereo Camera 435i, including 

IMU embedded with NVIDIA Jetson Nano Kit, is installed on the moving asset (such as workers, 

UAVs, robodog, or machinery like excavators, fork lifters etc.). In this study, the model is tested 

on simulated virtual indoor warehouse environment containing a moving fork lifter. 

For the processing of the proposed solution, NVIDIA ISAAC SDK is utilized. It monitors the 

pre-calibrated stereo camera and performs SVIO to generate a trajectory of moving asset motion 

relative to the starting point. AprilTags placed at the starting point are decoded to transform the 

SVIO computed coordinates to absolute global coordinates. 

After accurately localizing the moving asset, the trajectory can be visualized by the site manager 

on NVIDIA ISAAC Sight or the BIM Model. 
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Figure 1. Proposed framework of A-SVIO based positioning system 

5. EXPERIMENTATION 

The proposed framework is experimented and validated on a virtual indoor warehouse 

environment, created using NVIDIA ISAAC SIM. The configuration parameters, pre-setup 

requisites, processing, and visualization of results obtained are explained in this section.  

5.1 Configuration Setup 

The development environment compatible for this experiment is Ubuntu 18.04 with an NVIDIA 

Graphic Card version greater than GTX 1080 and driver version greater than 440. The development 

environment configuration parameters used in this study are shown in Table I. 

Table 1. Configuration requirements of development environment 

Development Environment Requirements 

Ubuntu OS 18.04 

Graphic Driver NVIDIA GeForce RTX 3080 with NVIDIA driver version 495 

SDK NVIDIA ISAAC  
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 The experimental setup used for the demonstration of this solution is explained in Table II.  

Table 2. NVIDIA ISAAC SDK setup tasks 

SDK Configuration Setup Used 

NVIDIA ISAAC SIM • Virtual indoor warehouse environment containing a 

moving asset (i.e., forklifter). 

• Intel RealSense 435i (with IMU) with NVIDIA Jetson 

Nano Kit installed on forklifter. 

• AprilTag fiducial markers placed on the entry point. 

NVIDIA ISAAC Sight • Elbrus SVIO trajectory on realsense stereo camera feed. 

• Trajectory transformation to global absolute position from 

decoded AprilTags. 

 

 

Figure 2. NVIDIA ISAAC SIM virtual indoor warehouse environment for testing of A-SVIO  

5.2 Processing 

5.2.1 AprilTag Decoding 

AprilTags are the most robust and feasible visual fiducial markers proposed by Olson [31] in 

2011. These allow 6DOF localization in a single image frame by estimating the camera pose 

relative to the decoded tag. The tag linked with the BIM model can provide further insights into 

the indoor environment like floor number, unit number, etc. Installation of tags in the site is prone 

to errors; however, the installation error can be corrected by utilizing depth information of the 

stereo camera and the BIM-linked information. Hence, resulting in a more accurate estimate of the 

camera position and orientation with respect to the tag. 
5.2.2 SVIO Processing 

NVIDIA ISAAC SDK includes the SVIO codelet that utilizes the built-in Elbrus Visual 

Odometry library [33], [34] to determine the 3D pose of the moving asset from the video stream of 

stereo camera and its IMU readings. The library performs real-time with an average detection speed 

of 30 fps on three cores @ 3.3 GHz and 144 fps on Jetson AGX for 640x480 video resolution. The 

algorithm reports a drift of ~1% in localization and 0.003 degrees/meter of rotational error in 

motion on the KITTI benchmark dataset. 

Elbrus SVIO utilizes inertial data from IMU embedded inside the stereo camera. If distortion in 

input images fails visual odometry, the IMU data estimates the positional trajectory for up to a 

Intel RealSense 

Stereo Camera 

(with IMU) 

AprilTag at Entry 
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second. The integration of IMU with vision updates pose seamlessly, provided the video 

interruption lasts for less than a second. 
5.2.3 Positional Transformation 

Stereo cameras acquire images from two synchronized cameras with known calibration intrinsic. 

SVIO uses this imaging data to retrieve the 3D pose of the left camera relative to its starting position. 

For the IMU integration to work with SVIO, it is required that the stereo camera baseline is in a 

horizontal position at the beginning; otherwise, the initial pose and gravitational acceleration vector 

are not maintained correctly by Elbrus SVIO. 

The 3D trajectory computed by the SVIO is relative to the started point. This is transformed to 

an absolute global position by utilizing the decoded AprilTag information. It is assumed that the 

moving asset activates localization computation at the marked entry points, where the embedded 

stereo camera decodes at least one AprilTag to transform the SVIO position to absolute global 

coordinates. Every time the moving asset sees an AprilTag, the positional drift (if any) is corrected. 

Moreover, the most reliable and robust SVIO based localization allows for fewer tag installations 

in the construction site. 

6. RESULTS 

The 3D trajectory computed by Elbrus SVIO is visualized on NVIDIA ISAAC Sight. The tag 

transformed position is the absolute global position, which can be displayed either on ISAAC Sight 

or on the BIM model of the floor number retrieved from decoded tag. Figure 3 shows the 

transformed position trajectory of moving asset on the ISAAC Sight. 

 

Figure 3. Trajectory of the moving fork lifter visualized on NVIDIA ISAAC Sight  

7. CONCLUSTION & FUTURE WORK 

In this study, a framework is proposed and experimented with a virtual simulation environment 

to localize a moving asset in GPS denied indoor environment. Recent research studies on indoor 

localization integrate tag with the visual-inertial odometry system; however, this odometry does 

not serve as a reliable approach in the tag-blind zone. Therefore, more reliable stereo visual-inertial 

odometry is proposed to be utilized. This not only increases the accuracy of localization but also 

allows for fewer tag installations in the construction site. The proposed methodology is 

experimented with a simulated environment utilizing open-source NVIDIA ISAAC. 

The proposed system will be further tested in the real indoor construction site to validate the 

performance of the proposed A-SVIO approach. This methodology aims to improve safety and 

Origin / Starting Position 

= Stereo camera position 

relative to the decoded 

AprilTag 
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increase productivity at construction sites, contributing towards 1) indoor monitoring of man 

machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing 

what and where. 
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