• 제목/요약/키워드: uncertainty observer

검색결과 132건 처리시간 0.024초

파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어 (Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay)

  • 김종해
    • 전자공학회논문지SC
    • /
    • 제41권3호
    • /
    • pp.9-16
    • /
    • 2004
  • 본 논문에서는 시변 시간지연을 가지는 특이시스템에 대한 관측기 기반 Η∞ 출력궤환 제어기 설계방법을 단 하나의 선형행렬부등식 조건을 이용하여 제시한다. 제어기가 존재할 충분조건과 제어기 설계방법을 모든 변수의 견지에서 완벽한 하나의 선형행렬부등식으로 표현하여 볼록최적화가 가능하도록 한다. 제어기의 설계과정은 제안한 하나의 충분조건으로부터 직접 구해진다. 구한 충분조건은 하나의 선형행렬부등식으로 표현되어지므로, 슈어 여수정리와 변수치환 및 특이치 분해의 기법에 의하여 궤환이득과 추정이득을 포함하는 모든 해로부터 관측기 기반 Η∞ 출력궤환 제어기를 동시에 구할 수 있다. 또한 제안한 알고리듬을 이용하여 파라미터 불확실성과 시간지연을 가지는 특이시스템에 대한 관측기 기반 견실 Η∞ 출력제환 제어기 설계도 가능함을 보인다. 마지막으로, 제안한 알고리듬의 타당성을 수치예제를 통하여 확인한다.

PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구 (Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM)

  • 고종선;윤성구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Design of Enhanced Min-Max Control using Feedforward Control

  • Im, Yoon-Tae;Song, Seong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.312-315
    • /
    • 2003
  • This paper deals with robust control problems of linear systems with matched nonlinear uncertainties. In order to handle the uncertainties, a Lyapunov min-max control approach can usually be adopted. By the way, the min-max control input is required to be switched and provokes chattering phenomena which limit the practical implementation. The magnitude of switching control input which cause chattering is dependent on the size of uncertainties. In this paper, it is shown that the magnitude of the min-max control input can be made small using a well-known disturbance observer technique and only considers the disturbance observing errors. The chattering phenomena can be reduced as small as possible by selecting a high diturbance observer gain. The simulations show that the min-max control with a disturbance observer can reduce chattering phenomena much smaller and guarantee much better robust performance rather than the one without a disturbance observer.

  • PDF

PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계 (Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer)

  • 김인혁;최대식;손영익
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

Observer를 이용한 화학공정의 이상감지 (Fault detection of chemical process using observer scheme)

  • 최용진;오영석;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.589-594
    • /
    • 1993
  • This paper presents a fault detection strategy that discriminates the faulty sensor and that detects the component fault using a bank of observers for the system in which sensor fault and component fault can occur simultaneously. Observers as many as the number of measurements are designed, and each observer uses measurements excluding sequentially one measurement, to estimate the state variables. The faulty sensor can be found out by comparing each state variable from different observer. Next, component fault can be detected by using measurements from the sensors excluding the faulty sensor. The suggested strategy is applied to a nonisothermal, series reaction with unknown reaction kinetics in a CSTR. This strategy is found out to perform well even in the case that the sensor and component fault occur simultaneously. Since each observer is designed to be independent of reaction kinetics, this strategy is not affected by the model uncertainty and nonlinearity of the reaction kinetics.

  • PDF

외란관측기를 이용한 서로계의 통합설계 (Integrated Design of Servomechanisms Using a Disturbance Observer)

  • 김민석;정성종
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

외란 관측기를 이용한 견실한 차량 안정성 제어 (Robust Vehicle Stability Control Using Disturbance Observer)

  • 한진오;이경수;강수준;이교일
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2519-2526
    • /
    • 2002
  • A disturbance observer-based vehicle stability controller is proposed in this paper. The lumped disturbance to the vehicle yaw rate dynamics caused by the uncertain factors such as uncertain tire forces and parameters is estimated by the disturbance observer, which is utilized by the robust controller to stabilize the lateral dynamics of the vehicle. The dynamics of the hydraulic actuator is incorporated in the vehicle stability controller design using the model reduction technique. Modular control design methodology is adopted to effectively deal with the mismatched uncertainty. Simulation results indicate that the proposed disturbance observer-based vehicle stability controller can achieve the desired reference tracking performance as well as sufficient level of robustness.

$H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어 (Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework)

  • 최종환;김승수;양순용;이진걸
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

특이시스템의 강인 관측기 기반 $H_{\infty}$ 제어 (Robust observer-based $H_{\infty}$ control for singular systems)

  • 김종해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.7-9
    • /
    • 2004
  • This paper provides an observer-based $H_{\infty}$ controller design method for singular systems with and without time-varying delay by just one LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI (linear matrix inequality) approach. The design procedure involves solving an LMI. The observer-based $H_{\infty}$ controller in the existing results can be constructed from the coupled two or more conditions while the proposed controller design method can be obtained from an LMI condition, which can be solved efficiently by convex optimization. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables. An example is given to illustrate the results.

  • PDF

슬라이딩 모드 외란 관측기와 제어기를 이용한 DC 모터 전류 제어기 설계 (Design of a DC Motor Current Controller Using a Sliding Mode Disturbance Observer and Controller)

  • 김인혁;손영익
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.417-423
    • /
    • 2016
  • Using a sliding mode controller and observer techniques, this paper presents a robust current controller for a DC motor in the presence of parametric uncertainties. One of the most important issues in the practical application of sliding mode schemes is the chattering phenomenon caused by switching actions. This paper presents a novel sliding mode controller that incorporates an integral control with a sliding mode disturbance observer to attenuate the chattering by reducing the controller/observer switching gains. The proposed sliding mode disturbance observer is designed to estimate a relatively slow varying signal in the equivalent lumped disturbance owing to system uncertainties. Combining the estimated uncertainty with the sliding mode control input, the proposed controller can achieve the control objective by using the relatively low gain of the controller. The proposed disturbance observer does not include the switching control input of the baseline sliding mode controller to reduce the observer switching gain. In the proposed approach, the integral sliding mode control is used to improve the steady state control performance. Comparative computer simulations are carried out to demonstrate the performance of the proposed method. Through the simulation results, the proposed controller realizes the robust performance with reduced current ripples.