• Title/Summary/Keyword: uncertainty importance

Search Result 279, Processing Time 0.028 seconds

Derivation of uncertainty importance measure and its application

  • Park, Chang-K.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.272-288
    • /
    • 1990
  • The uncertainty quantification process in probabilistic Risk Assessment usually involves a specification of the uncertainty in the input data and the propagation of this uncertainty to the final risk results. The distributional sensitivity analysis is to study the impact of the various assumptions made during the quantification of input parameter uncertainties on the final output uncertainty. The uncertainty importance of input parameters, in this case, should reflect the degree of changes in the whole output distribution and not just in a point estimate value. A measure of the uncertainty importance is proposed in the present paper. The measure is called the distributional sensitivity measure(DSM) and explicitly derived from the definition of the Kullback's discrimination information. The DSM is applied to three typical discrimination information. The DSM is applied to three typical cases of input distributional changes: 1) Uncertainty is completely eliminated, 2) Uncertainty range is increased by a factor of 10, and 3) Type of distribution is changed. For all three cases of application, the DSM-based importance ranking agrees very well with the observed changes of output distribution while other statistical parameters are shown to be insensitive.

  • PDF

Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands

  • Song, Shuai;Wu, Yuan H.;Wang, Shuai;Lei, Hong G.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.157-168
    • /
    • 2022
  • A moment-independent importance measure analysis approach was introduced to quantify the effects of structural uncertainty parameters on probabilistic seismic demands of simply supported girder bridges. Based on the probability distributions of main uncertainty parameters in bridges, conditional and unconditional bridge samples were constructed with Monte-Carlo sampling and analyzed in the OpenSees platform with a series of real seismic ground motion records. Conditional and unconditional probability density functions were developed using kernel density estimation with the results of nonlinear time history analysis of the bridge samples. Moment-independent importance measures of these uncertainty parameters were derived by numerical integrations with the conditional and unconditional probability density functions, and the uncertainty parameters were ranked in descending order of their importance. Different from Tornado diagram approach, the impacts of uncertainty parameters on the whole probability distributions of bridge seismic demands and the interactions of uncertainty parameters were considered simultaneously in the importance measure analysis approach. Results show that the interaction of uncertainty parameters had significant impacts on the seismic demand of components, and in some cases, it changed the most significant parameters for piers, bearings and abutments.

Quantification of Entire Change of Distributions Based on Normalized Metric Distance for Use in PSAs

  • Han, Seok-Jung;Chun, Moon-Hyun;Tak, Nam-Il
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.270-282
    • /
    • 2001
  • A simple measure of uncertainty importance based on normalized metric distance to quantify the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, white most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. Normalization is made to make the metric distance measure a dimensionless quantity. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution.

  • PDF

A New Measure of Uncertainty Importance Based on Distributional Sensitivity Analysis for PSA

  • Han, Seok-Jung;Tak, Nam-IL;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.415-420
    • /
    • 1996
  • The main objective of the present study is to propose a new measure of uncertainty importance based on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given by a known analytical distribution and the other given by an empirical distribution generated by a crude Monte Carlo simulation. To study its applicability, the present measure has been applied to two different cases. The results are compared with those of existing three methods. The present approach is a useful measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate uncertainty importance without any complex process. On the basis of the results obtained in the present work, the present method is recommended to be used as a tool for the analysis of uncertainty importance.

  • PDF

Evaluation of Uncertainty Importance Measure in Fault Tree Analysis (결점나무 분석에서 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun;Jeong, Seok-Chan
    • The Journal of Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-37
    • /
    • 2008
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $v_i$ of $q_i$, V and ${\partial}V/{\partial}v_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}v_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for evaluating the measure using discretization technique and Monte Carlo simulation. The proposed method provides a stable uncertainty importance of each basic event.

The anticipated regret, perceived uncertainty, price sensitivity, and purchase hesitation of internet fashion consumers - Focusing on overseas purchasing - (인터넷 패션 소비자의 예상된 후회와 지각된 불확실성, 가격민감도 및 구매 망설임에 관한 연구 - 해외 직접구매를 중심으로 -)

  • Kim, Jong-ouk
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2018
  • In this study, the effects of anticipated regret and perceived uncertainty on price sensitivity or purchase hesitation in overseas purchasing are analyzed along with the effects of price sensitivity on purchase hesitation. The survey was conducted among internet fashion consumers with experience in overseas purchasing and 480 responses were used in the data analysis. The results showed the psychosocial anticipated regret positively influenced the price importance, and the service, product and psychosocial anticipated regret positively influenced the price search. The preference and psychology uncertainty positively influenced the price importance, and the information and psychology uncertainty positively influenced the price search. The price importance positively influenced payment stage hesitation and shopping cart abandonment, and the price search positively influenced purchase hesitation in overseas purchasing. The functional, service and psychosocial anticipated regret positively influenced payment stage hesitation, and the service and psychosocial anticipated regret positively influenced shopping cart abandonment and overall purchase hesitation. In addition, the perceived uncertainty positively influenced the payment stage hesitation, and the information and psychology uncertainty positively influenced the shopping cart abandonment and overall purchase hesitation. The results of this study will be helpful for developing the marketing strategy for customer relationship management for overseas internet shopping web-sites.

Evaluation of Uncertainty Importance Measure for Monotonic Function (단조함수에 대한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF

The Concept of Measurement Uncertainty and the GUM (측정불확도의 개념과 GUM)

  • Jong Wha Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.319-332
    • /
    • 2023
  • Ever since the development of the Guide to the Expression of Uncertainty in Measurement (GUM) in 1993, the concept of measurement uncertainty has been considered a core concept in metrology and the importance of proper uncertainty evaluation has continuously been increasing. Unfortunately, few papers in Korean are available that introduce the concept of measurement uncertainty and the GUM correctly and in sufficient detail. This review describes in detail the mathematical, historical, and philosophical background behind the concept of measurement uncertainty and the GUM, and also discusses some special aspects of uncertainty evaluation in chemical analysis.