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Abstract

The main objective of the present study is to propose a new measure of uncertainty importance based
on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained
from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given
by a known analytical distribution and the other given by an empirical distribution generated by a crude
Monte Carlo simulation. To study its applicability, the present measure has been applied to two different
cases. The results are compared with those of existing three methods. The present approach is a useful
measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate
uncertainty importance without any complex process. On the basis of the results obtained in the present
work, the present method is recommended to be used as a tool for the analysis of uncertainty importance.

1. Introduction

In the precess of uncertainty quantification for PSAs one often uses a subjective assessment to
quantify the uncertainties that are related to rare events and/or less known phenomena. Since the
estimation of output uncertainties is affected by subjective assumptions needed to quantify input
uncertainties, it is necessary to assess the relative effect of input uncertainties to output uncertainties.
This result can be utilized in determining the priority used to refine uncertainties according to subjective
assessment. Also it can be used to determine where future efforts should be directed in order to reduce
uncertainties. The uncertainty importance based on distributional sensitivity analyses provide
information on the relative contribution of input uncertainties to output uncertainties and the relative
impact on the change of output distribution induced by various distributional changes in inputs.

Recently, various importance measures have been suggested and they can be classified as: (1)
extensions of the Fussell-Vesely importance measure based on the variances'™, (2) the bivariate
measures based on the shifts in quantiles of output distributions®, (3) the information theoretic entropy
measure based on the definition of Kullback-Leibler information discrimination®, and others (Table 1). A
brief summary of their characteristics can be found in Park and Ahn’s paper®.

The present paper proposes a new uncertainty importance measure based on distributional sensitivity
analysis. The new measure is developed to utilize the metric distance calculated from cdfs. The metric
distance provides more useful measure than the existing approaches because (1) it considers the
characteristics of the entire distribution, (2) it can be directly calculated from output distribution without
any prior assumptions, and (3) it can be calculated from a small size of sample data.

2. Outlines of Uncertainty Importance and Distributional Sensitivity Analysis

The analysis of uncertainty importance based on distributional sensitivity analysis has been
developed to provide the information on uncertainties associated with assessment of rare events and/or
less known phenomena in PSA®. Since the main objective of the uncertainty importance measure is to
provide the information that augments normal risk measures, the basic concept of uncertainty importance
is to decide uncertainty rankings of input parameters according to their relative importance, i.e., relative
impacts on overall uncertainty induced by uncertainties of input parameters. Thus, the uncertainty
importance measure, in conjunction with risk measures, is important for determining where future efforts
should be placed in order to quantify the risk more precisely.
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The procedure of uncertainty importance based on distributional sensitivity analysis is well
summarized in Park and Ahn’s paper®. Since the present work mainly focuses on a new approach of
uncertainty importance measure, only its applicability has been examined following to the procedure.
The detailed procedure is referred to the paper presented by Park and Ahn®.

It should be noted here that typical cases of input distributional changes are needed to perform the
uncertainty importance analysis. There are three typical cases of input distributional changes, i.e., (1)
uncertainty is completely eliminated; (2) uncertainty range is changed; (3) type of distribution is
changed®. The present study considers only one case where the uncertainty is completely eliminated
because this case agrees very closely with the above mentioned reason for measuring uncertainty
importance.

3. Metric Distance Measure of Uncertainty Importance

This section derives a measure of uncertainty importance in terms of a metric distance and evaluates
the measure for two cases; one is a cdf given by a known distribution such as an analytical distribution
function (i.e., Weibull distribution function); and the other is a cdf given by an empirical distribution
function generated by crude Monte Carlo simulations.

3.1 Metric Distance

The metric distance in this study is defined as following:

MD? (o) = [, - y2 P M
where MD(i:0) is the metric distance using quantiles between base case and its sensitivity case, y,0 is the
ath quantile given by a distribution function for base case, and y,/ is the ath quantile given by a
distribution function for its sensitivity case.

The metric distance MD(i:0) means an integrated distance of quantiles between base case and its
sensitivity case. The metric distance measure using Eq. (1) can easily be calculated using sample data.
For example, if output distributions are unknown and their estimations are complex, it is useful to
perform uncertainty importance analysis using the metric distance measure MD(i:0). The metric distance
measure provides the information on how much a given input parameter impacts on output distributions

when its input distribution changes. A larger MD(i:0) means larger uncertainty changes. Thus, the input
parameter that gives large values of MD(i:0) means that it is more important than other input parameters.

3.2 Uncertainty Importance Measures for a Given Analytical Distribution Function and
General Forms

Two different cases are considered in the assessment of the uncertainty importance: The first case is
when the distribution is known as an analytical distribution and the other case is when the distribution is
unknown. The first case is given by two-parameter Weibull distribution and for the second case an
empirical distribution generated by crude Monte Carlo simulation is used.

Two-Parameter Weibull distribution: Quantiles for two-parameter Weibull distribution function is
derived as follows:

1

1)s
Yo = x(logl_a) @

where y, is the ath quantile of a random variable ¥ under given cdf as a Weibull distribution, a is
probability, and A and B are scale and shape factor of Weibull distribution, respectively.

As given in Weibull distribution functions, the metric distance measure MD(i:0) can be analytically
evaluated by inserting Eq. (2) into Eq. (1):

MD(i0) = xir(Bi +D+ xf,r(BE- +1)- 27»,-7»,,1“([% + -Bl— +1) 3)
where the subscript o refers to base case and i to its distributional sensitivity case in which input
distribution is changed. I'(x) denotes a gamma function. If 4; = A, and g; = f,, two distributions become
identical and MD(i:0) goes to zero. A larger MD(i:0) reflects the situation where two distributions are
different in their respective shapes and in their ranges of variation.
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Empirical Distribution generated by a crude Monte Carlo simulation: Empirical distribution
functions can be easily generated by crude Monte Carlo simulations when the mathematical relationship
between inputs and outputs can be expressed by a simple functional form with an adequate accuracy. An
empirical distribution function S(y) can be obtained directly without any assumptions for distribution
because the probability of elements within each sample is essentially the same due to the probabilistic
nature of the crude Monte Carlo simulation, i.e., P; = I/N where N is sample size:

1 N
S(y) = I 8(y>y,) C))
1

n=

where
1, if y>y
8 > —- n
>, {0, otherwise .
Quantiles can easily be obtained by the inverse of an empirical distribution function in this case. If
sample sizes N and M of crude Monte Carlo simulations are the same (i.e., sample sizes equal to base

case and its sensitivity case), the metric distance measure MD(i:0) becomes
N

1
NE
where y?,, is the (n/N)th quantile for base case, and 0 <n < N and y/,, is the (n/N)th quantile for its
sensitivity case. As given in empirical distribution functions generated by crude Monte Carlo

simulations, the MD(i:0) can easily be calculated using Eq. (5). If sample sizes are sufficiently large, Eq.
(5) applies to any cases without prior assumptions of distribution function.

MD? (o) = [.V:,/N = Yun i &)
l

4. Applicability of Metric Distance Measure

The uncertainty importance measure described in the above is now applied to two examples to assess
its applicability: (1) the uncertainty analysis associated with estimations of the system unavailability or
reliability obtained from a Boolean representation of a system fault tree®; (2) the uncertainty analysis
associated with estimations of Cs/ release fraction to the environment under a hypothetical severe
accident sequence of a station blackout (SBO) of Young-Gwang 3&4 nuclear power plant’. These
examples are widely used in PSA application.

Example 1: Fault tree and event tree analyses are widely used in PSA. This example is one of the
typical case of a system fault tree analysis. Suppose that the mathematical representation of a top event
has the following form (adopted from Ref. 6):

Top(x) = X,X3X5 + X, 23X + XX, X5 + X, X4 Xg + X,X3X,
+ X, X3 Xg + X, X, X + Xy XsXg + Xy Xy Xq + Xy XX, ©)

This top event consists of 10 cut sets and seven events. Here x, and x, represent initiating events and
are expressed as the number of occurrences per year, while the basic events x;-x; represent component
failure rates. Let us assume lognormal distributions for the initiating events and the basic events with
mean values of 2, 3, 0.001, 0.002, 0.004, 0.005 and 0.003, respectively. To simplify the evaluations,
suppose that the events are independent of each other. The metric distance measure for 7 input
parameters have been calculated and the relative impacts of uncertainty have been ranked according to
their magnitude as shown in Table 2.

In order to assess the applicability of the present approach, the results of metric distance measure are
compared with those of three existing uncertainty importance measures, i.e., (1) standard deviation
measure’; (2) bivariate measures’; and (3) information theoretic entropy measure. To compare between
each measures, the calculated results of importance measures and their rankings are summarized in Table
2, and a graphical representation for rankings of each measures is shown in Fig. 1.

The comparison of rankings between each uncertainty importance measures indicates that the highly
ranked parameters .X,, X;, and X, are more important than the others (i.e., corresponding to the first three
higher rankings), as shown in Fig. 1. Rankings of remaining parameters are unimportant because
distributional changes of remaining parameters shown in Fig. 1 are negligibly small. The plotting lines of
rankings obtained from four different measures are very close as shown in Fig. 1 even though rankings
for each parameter are slightly different. This difference, however, is not clearly identifiable in this
example.
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Example 2: The evaluation of severe accident sequences using a mechanical model is an another
aspect of PSA. This is one of the typical case of uncertainty importance analysis. The example is
associated with the source term uncertainty quantification’. A response surface equation, generated by
the RSM based on inputs determined from an experimental design in Ref. 7 is used as a surrogate model
of the Cs/ release fraction described in the above sequence as follows:

Yeu =10810
=-101226+0.02434 X, +024005X, —0.02153.X; +0.05670.X, +0.04138 X - 0.01547 X,
~0.09064 X +0.03068Xg +0.04505X g —0.07454 X, +0.08451.X, +0.10957.X, X,
~005955X; X, +0.07465X, X5 +0.11925X, X5 ~011116X, X ;o —0.09440X; X, —0.04404 X, X @)
+0.06014 X3 X;, —0.05155X, X - 0.07112.X, X, +002895X s X5 —0.06200.Xs X, +016722.X,, X,

—011357 X7 —0.06022.X2 - 005629 X% ~ 011337 X7 —0.04698.X3 —0.19005.X 2 - 0.03811.X7
-0.05172X%

where ¥, is logarithm transformed Cs/ release fraction, and X, ..., X,, are input parameters that are
chosen by the screening referred in Ref. 7. Table 1 in Ref. 7 gives descriptions of each input parameters
and estimated pdfs of those uncertainties. '

The metric distance measure has been evaluated using Eq. (7). To simplify the evaluation, it is
assumed that 12 input parameters are independent of one another. The metric distance measure for 12
input parameters have been calculated and the relative impacts of uncertainty have been ranked
according to their magnitude and summarized in Table 3. The results of metric distance measure are
compared with those of three above mentioned measures. The calculated results of importance measures
and their rankings are summarized in Table 3, and a graphical representation of rankings for each
measures is given in Fig. 2.

The comparison of rankings between each uncertainty importance measures indicates that the highly
ranked parameters X, .X;, X;, and X, are more important than the others (i.e., corresponding to the first
four higher rankings), as shown in Fig. 2.

5. Summary and Conclusions

A new approach of uncertainty importance analysis is presented in this paper. The present study
shows that each measures can provide a reasonabie result although their rankings are slightly different
from each other. The present approach gives a useful measure of uncertainty importance based on the
cdfs, since the measure is simple and easy to calculate the uncertainty importance without any prior
process. On the basis of the results obtained in the present work, the present measure is recommended to
be used as a tool for the analysis of uncertainty importance.
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Nomenclature

MD(i:0) metric distance using the quantiles between ~ y . the (#/N)th quantile where 0 <n <N

the base case and its sensitivity case . .
K4 Yoy logarithm transformed Cs/ release fraction

N sample size .
P; probability for an element generated by a o probability

crude Monte Carlo simulation, P; = I/N B shape factor for Weibull distribution
S(y)  empirical distribution function of random é delta function defined by

variable Y L if y>y,
X,,~X,, input parameters that are chosen by the o(y>y,)= {O, otherwise

Yo V1.« the ath and (/-a)th quantile given a

i f in Ref.
screening referred in Ref. 7 I'(x)  gamma function

distribution function of a random variable Y, A scale factor for Weibull distribution

respectively
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Table 1 Classification and Characteristics of Uncertainty Importance Measures Suggested in the Recent PSA

Study
Basic Approach Proposers Uncertainty Importance Measure Criteria and Characteristics
Bier Vartx ) Varl A reduction in the output variance
U - Y Var(O)
Var(Q)0 Var(x ;)
= Var(Q,)/ Var(Q)
Based on the point Iman y aQ Based on the variances
estimations UI(j) =[Var(x, N == A square root of expected reduction in
(Extensions of the Fussell- ox j the output variance
Vesely importance R , 2
measure) 2 ’
(Z Qi,j ) - (Z Qi,j )2
i=1 i=1
B n-1
Helton et al. V2 A percentage contribution in the output:
, oQ Var(x j) standardized regression coefficient
U =57 Naor
x; | Var(Q)

Iman and Hora

UI(j) = R? statistic value

A percentage change in the output:
determinant coefficient of regression
model

Khatib et al. UI(j) = [p ol £] A combination of statistical parameters
2 ) b
[Q)a /D))
£ = # a =095
[Qa / Qlfa ]
Iman and Hora 0, 0, Bivariate measure of the change in the
UI(j) = |:i’-il-_i output distributions, a = quantile
Qa Ql—a
Based on the probability Park and Ahn £ () Information theoretic entropy measure
distribution UI(j) = J' £, (0)n 9 & based on the definition of Kullback-
e fo (x) Leibler Information discrimination

The present
method

Ur() = [(12 - 18)da

Based on the metric distance
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Table 2 Summary of Uncertainty Importance Measures for Example 1 and Their Rankings based on Metric
Distance, Entropy Information, Standard Deviation, and Bivariate Measures
Uncertainty Importance Measure and Their Rankings

Changed Metric Entropy Standard Bivariate Measures
Variables Distance Information Deviation
Measure Measure Measure
R0.05 RO.”
X 440E-6 (6) ° 1.63E2 (¥ 2.15E-5 ) 1.07 0.99 [6)
X3 291E55 (1) 620E-2 (1) 7.25E-5 ()] 1.25 0.84 )
X3 372646 (D) 356E-3 (0 1.55E-5 (@) 1.01 098 ©6)
X, 1.16E-5 (4) 142E2 (5) 3.72E-5 “4) 1.06 0.98 ()
Xs 262E-5 (2) 2.76E2  (3) 5.33E-5 3) 1.16 0.94 )
X 246E-5 (3) 371E2 Q2) 5.74E-5 ) 113 0.91 3)
X 7.26E-6 ) 8.83E-3 ) 2.84E-5 (5) 1.07 0.98 @

Table 3 Summary of Uncertainty Importance Measures for Example 2 and Their Rankings based on Metric
Distance, Entropy Information, Standard Deviation, and Bivariate Measures
Uncertainty Importance Measure and Their Rankings

Changed Metric Entropy Standard Bivariate Measures
Variables Distance Information Deviation
Measure Measure Measure
Roos Rogs
X, 0.018949 (3) 0.036030 (2) 0.103676 (4) 0.922735 0.948517 @
X3 0.015351 &) 0.032816 @) 0.248321 (1) 0.886692 1.077828 )
X3 0.001607 (9) 0.005046 (9) 0.021580 (10) 0.973409 1.029660 9
X, 0.001168 (1D) 0.001865 (10) 0.056578 (8) 0.979166 1.018033 an
Xs 0.009255 (6) 0.017811  (5) 0.062610 (7) 0.961588 0.984511 €3]
X 0.001207  (10) 0.000511 (12) 1.02E-07 (12) 0.990663 0.969834 10
X5 0.000991 (12) 0.000555 (11 0.015529 (11) 0.985149 0.994891 (12)
Xy 0.020515 (2) 0.034182 (3) 0.138478 (3) 0.902389 0.914539 3
Xy 0.004431  (7) 0.007523  (7) 0.051479 (9) 0.956745 0.948993 (6)
X0 0.037625 (1) 0.100524 (1) 0.180285 (2 0.907107 0.886694 )
xn 0.002985 (8) 0.005309 (8) 0.080841 6) 0.961383 1.027206 (U]
X2 0.009730 (5) 0.017773  (6) 0.092737 () 0.920321 1.006315 )
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Parameter Parameter
Figure 1 Uncertainty Importance Rankings of Figure 2 Uncertainty Importance Rankings of
Parameters for Example 1 by Metric Distance, Parameters for Example 2 by Metric Distance,
Entropy Information, Standard Deviation, and Entropy Information, Standard Deviation, and

Bivariate Measures. Bivariate Measures.
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