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Abstract

A simple measure of uncertainty importance based on normalized metric distance to quantify
the entire change of cumulative distribution functions (CDFs) has been developed for use in
probability safety assessments (PSAs). The metric distance measure developed in this study
reflects the relative impact of distributional changes of inputs on the change of an output
distribution, while most of the existing uncertainty importance measures reflect the magnitude
of relative contribution of input uncertainties to the output uncertainty. Normalization is made
to make the metric distance measure a dimensionless quantity. The present measure has been
evaluated analytically for various analytical distributions to examine its characteristics. To
illustrate the applicability and strength of the present measure, two examples are provided. The
first example is an application of the present measure to a typical problem of a system fault tree
analysis and the second one is for a hypothetical non-linear model. Comparisons of the
present result with those obtained by existing uncertainty importance measures show that the
metric distance measure is a useful tool to express the measure of uncertainty importance in
terms of the relative impact of distributional changes of inputs on the change of an output

distribution.

Key Words : uncertainty importance; metric distance; uncertainty analysis; importance

measure.

1. Introduction output uncertainty it is possible to focus one’s

attention on the areas where more information is

Currently, the quantification of uncertainty has needed. In this respect, the uncertainty
become an essential part of the overall PSA. importance measure is an important tool to find
Knowing how input uncertainties are related to the where future efforts should be directed. There are
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Table 1. Uncertainty Importance Measures Proposed in the Recent PSA Study

Proposers

Uncertainty importance measure

Criteria and characteristics
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The present
method
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Based on the normalized metric distance

a number of existing uncertainty importance
measures that have been proposed by earlier
investigators as summarized in Table 1.

The objective of the uncertainty importance
measure may be different depending on the
specific goal or the purpose of its application. For
example, if one wants to reduce the uncertainty of

an output estimate, the uncertainty importance

measure that gives more information about the
relative impact of the input uncertainty on the
output uncertainty should be preferred. However,
if an accurate quantification of the output
distribution is needed, one should use the
uncertainty importance measure that shows the
relative impact of distributional changes of inputs

on the change of an output distribution. As can
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be seen in Table 1, while Nakashima and Yamato
[1], Bier |2], Hora and Iman [3], Iman [4], Helton
et al. [5], Andsten and Vaurio [6] focused on the
reduction of the output uncertainty, Iman and
Hora [7], Khatib-Rahbar et al. [8], Park and Ahn
{9] focused on the precise quantification of an
output distribution. One of the key questions that
arise from the previous studies is how can we
quantitatively compare and rank two results when
one result has a high mean value with a narrow
uncertainty range while the other result has a
lower mean value with a broad uncertainty range.
With respect to the reduction of an output
uncertainty, the range of uncertainty, which is
expressed usually in terms of a variance (or a
standard deviation), is more meaningful. With
respect to the precise quantification of an output
distribution, on the other hand, the relative impact
on the change of an output distribution is more
important. These uncertainty importance
measures are very useful to express the
uncertainties that are related to rare events and/or
less known phenomena. In this case, input
uncertainties used to quantify the output
distribution are usually quantified based on the
opinions of experts. For this type of problem, in
particular, it is necessary to assess the relative
impact of different subjective assumptions on the
change of the output distribution. In the present
work, a simple measure of the uncertainty
importance that uses the entire change of CDFs
has been developed. The entire change of CDFs
is quantified by means of the normalized metric
distance between two CDFs. The present
uncertainty importance measure focuses on the
relative impact of the change of distribution of
inputs on the change of an output distribution.

2. Metric Distance Measure

The metric distance measure was originally

€— Sensitivity Case

Base Case

—

Probability

Y

(a} The Hamming distance (dashed area) when output
distribution is shifted.

Sensitivity Case —p»

Probability

14
(b) The Hamming distance (dashed area) when
uncertainty of output is reduced.

Fig. 1. Characteristics of the Hamming Distance
Between Two CDFs

developed as a measure of fuzziness [10], but its
concept can also be used to measure the
uncertainty importance expressed by a
probabilistic manner. A general form of the
metric distance D, called the Minkowski class of
distance, is as follows:

D=3 Ax) - fL(x) M) (1)

xeX
where fi(x) and fo(x) are functions of x, and w is a
number greater than 1. The Hamming and
Euclidean distances are special cases of the

Minkowski class of distances for w =1 and w = 2,
respectively. Figure 1 shows the characteristics of
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the Hamming distance between two CDFs. The
Hamming distance is equivalent to the dashed area
shown in Fig. 1.

In the present work, the Euclidean metric
distance between two CDFs normalized with the
mean of the base distribution is proposed for the
measure of uncertainty importance

1 . 1
(| [y, - yo1Pdp)?
MD (i:0) = k "E(Yf) @)

where MD(i:0} is the metric distance measure in
terms of quantiles between the base case and its
sensitivity case, y,° is the pth quantile of a CDF for
the base case, y, is the pth quantile of a CDF for
its sensitivity case, and E(Y") is the mean of output
distribution for the base case. The base case
refers to the case where an output distribution is
obtained with all the input distributions set to their
nominal distribution, whereas the sensitivity case
refers to the case where an output distribution is
obtained with a change in only one of the input
distributions. Normalization is made to make the
metric distance measure a dimensionless quantity.
The metric distance measure MD(i:0)} represents
an integrated distance of quantiles between two
CDFs generated by the base case and its sensitivity
case. The quantile of CDF is mathematically
defined as the inverse function of CDF. Thus, the
metric distance measure MD{i:0) defined in the
present study has a unique merit in the sense that
it can not only be derived for analytical
distributions but also it can easily be calculated for
analytical and empirical distributions, which will be
shown in the next paragraph. Certainly, the
metric distance measure MD(i:0) can provide
information on how much a given input parameter
impacts on the output distribution when its input
distribution is changed. If the value of y,° is equal
to that of y, over all ranges, the two distributions
become identical and MD(i:0) goes to zero. A

larger MD(i:0) means that there has been a larger
distributional change. Thus, the input parameter
that gives relatively a large value of MD(i:o0} means
that the input parameter is more important than
the other input parameters.

3. Analytical Evaluation of Metric Distance
Measure for Various Distributions

The normalized metric distance measure MD(i:0)
developed in the present work has a unique merit
in the sense that it can easily be derived or
calculated for analytical distributions as well as for
empirical distributions. An analytical derivation of
the metric distance measure for analytical
distributions and a simple representation of the
metric distance measure for empirical distributions
are shown here. To examine the characteristics of
the metric distance measure, three different cases
are considered: In the first two cases, analytical
distributions are treated, and an empirical type of
distribution is considered in the third case. The
first case corresponds to the case when all the
analytical distributions have symmetric
distributions. The second case consists of two
asymmetric distributions (i.e., lognormal and two-
parameter Weibull distributions). The detailed
derivations can be found in reference 11.

3.1. Case 1: Symmetric Distributions

Typical examples of symmetric distributions are
uniform and normal distributions. Let Y be a
random variable representing an output and let F
be the CDF of Y. Since F is monotonically
increasing function, the pth quantile of the
random variable Y is expressed by the
standardized random variable Z as follows:

Yp = H+ 07, (3)

where y, is the pth quantile of the random variable
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Y, z, is the pth quantile of the standardized
random variable Z, u is the mean of Y, and ¢ is
the standard deviation of Y.

For symmetric distributions, the metric distance
measure MD(i:0) normalized with the mean of the
base distribution can analytically be derived by
substituting Eq. (3} into Eq. (2):

oy V@ —1,)? +(0,-0,)’ @
Mo

The subscripts ¢ and i refer to the base case and

MD(

its distributional sensitivity case, respectively.
Equation (4) shows that the magnitude of MD(i:0)
obtained from symmetric distribution is determined
by differences of the mean and standard deviation
of Y.

3.2. Case 2: Two Asymmetric Distributions

The metric distance MD(i:0) between two
symmetric distributions given by Eq. (4} is not valid
for asymmetric distributions because of their
skewness. However, the magnitude of MD(i:0) for
the lognormal distribution and that of the Weibull
distribution can be determined from their unique
features such as their shape and scale factors.

3.2.1. Lognormal Distribution:

The random variable Y has a lognormal
distribution when logY is a normal random
variable. In reliability and risk analyses of nuclear
power plants, a lognormal distribution has been
widely used when a given event occurs very
infrequently or the range of the given event is very
large. Its functional form is given by

o

. _{in(y/B)y°
S Toncy eXP[ o2 ] (5)

where @ and g are the shape and scale factors of
Y, respectively. The pth quantile of lognormal

random variable Y is as follows:
¥, =Bexp(2ak,) ()

Here, k, is expressed by the inverse error function

as follows:
k,=erf"'(2p-1) 7

The normalized metric distance measure MD(i:o0)
can analytically be derived by substituting Eq. (6)
into Eq. (2) as follows:

2
\Fﬁ exp(202) +B2 exp(2a2) 20,5, exp o)y
MD(i:0)= 2 (8

a,
B exp(=?)

Equation (8) shows that the metric distance
measure MD(i:o} for the lognormal distribution is
determined by unique features such as its shape
and scale factors. The metric distance measure
MDy(i:0) for the lognormal distribution is different
from that of the symmetric distribution due to its
skewness (See Eq. {4} and Eq. {(11)).

3.2.2. Two-parameter Weibull Distribution:

The two-parameter Weibull distribution covers a
wide range of parameter space and can
completely be quantified by specifying the shape
factor @ and the scale factor 8. These two
parameters are defined in the probability density
function as follows:

a1
afly Yia
f»n= —(—] CXP[— ) ] 9
Bl B )
The pth quantile of Y can be derived as follows:
1
=Pl lo L )e (10)
Yo 2 1-p

By substituting Eq. (10} into Eq. {2}, the
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normalized metric distance measure MD(i:o0) for
the Weibull distribution can analytically be derived

as:

,fﬁm—z A+ +1)-2B,B, 0+ 41y
o a
! 0 o, Qg (11)

MD(i:0)= ]
BL(—+D)
uD

where I' is the gamma function. The metric
distance measure MD(i:o) for the Weibull
distribution is determined by its unique features as
in the case of the lognormal distribution.

3.3. Case 3: Empirical Distribution

The output distribution of the PSA results,
where simulations such as Monte Carlo are widely
used to obtain an output distribution from the
complex PSA models, may be considered as one
of the most representative empirical distribution.
An empirical distribution function S{y) can be
obtained directly from the Monte Carlo simulation
because of the probabilistic nature of the Monte
Carlo simulation:

1 N
S0 =~ 2.80> ) (12)
n=l|
L ify>y,
& =
>y {0, otherwise (13)

where N is the sample size and n is the sample
index. The quantiles can easily be obtained from
the inverse function of S. If the sample sizes of M
and N used in the Monte Carlo simulation are the
same (i.e., if the sample size of the base case is
equal to that of its sensitivity case), the normalized
metric distance measure MD(i:0) between the two
empirical distributions can be expressed as follows:

1<,
ﬁz[yn/N —)’Z/N]2
.. n=1
MD(i:0) = . (14)
N;yn
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where y°, is the (/N)th quantile for the base case
(0<n<N), and y',~ is the (n/N)th quantile for its
sensitivity case.

4. Examples

Two examples are selected to show the
applicability and strength of the metric distance
measure developed in the present work. In the
first example, a general application of the present
uncertainty importance measure for PSA is
illustrated. In the second example, on the other
hand, an effort has been made to show a more
clear advantage of the present importance
measure over existing measures to which it was
compared.

4.1. Example 1 : System Fault Tree Analysis

To examine the general applicability of the
present measure, an uncertainty importance
analysis has been performed for the typical
example of a system fault tree analysis used in
references 4 and 9. The example selected here is
the uncertainty analysis associated with
estimations of the system unavailability or
reliability obtained from a Boolean representation
of a system fault tree. The mathematical
relationship of the top event is expressed as
follows:

Top(X) = X, X3 X +X, X3 Ko+ X\ X, X5+ X, X, X,

+X2X3.X4 +X2X3X5+X2X4X5 (15)
+ X XX+ Xy X Xq + X XX,

In Eq. (15), X, and X, are initiating events
expressed as the number of occurrences per year,
and X3 ~ X; are basic events which represent the
component failure rate. The same assumptions of
input uncertainties used in references 4 and 9 are
adopted and shown in Table 2. It is also assumed
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Fig. 2. Empirical Distributions of the Top Event Frequency for the Base Case and the Sensitivity Case of
7 Input Parameters in Example 1
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Table 2. Assumptions of Inputs for Example 1

Variable Event description Nomninal Distribution Error
value factor

X1 Initiating event 2 Lognormal 2

X2 Initiating event 3 Lognormal 2

X3 Component failure rate 0.001 Lognormal 2

X4 Component failure rate 0.002 Lognormal 2

Xs Component failure rate 0.004 Lognormal 2

Xe Component failure rate 0.005 Lognormal 2

X7 Component failure rate 0.003 Lognormal 2

that all events are independent of one another.

There are three methods of change in input
distribution for the uncertainty importance
analysis, i.e., (1) the uncertainty is completely
eliminated; (2) the uncertainty range is changed;
(3) the type of distribution is changed [9]. In the
present example, the uncertainty importance
analysis is performed using the first method (1)
where one of the input uncertainties is completely
eliminated one after another.

The crude Monte Carlo simulations with 1000
sampling for one simulation are implemented to
obtain the empirical distributions of the top event
frequency for the base case and its sensitivity
cases. The base case is the case where the
empirical distribution of the top event frequency is
calculated using all input distributions which are
equal to their original distributions shown in Table
2. The sensitivity case, on the other hand, is the
case where the empirical distribution of the top
event frequency is obtained while replacing only
one of the input distributions with its nominal
value. In this case, the metric distance measure
can easily be obtained from empirical distributions
of the base case and its sensitivity case using Eq.
(14).

Figure 2 shows empirical distributions of the top
event frequency obtained by crude Monte Carlo

simulations for the base case and its sensitivity
case with 7 inputs. The metric distance measures
for each 7 input parameters have been calculated
and their relative impacts on the distribution of the
top event frequency have been ranked according
to the magnitude of the normalized metric distance
measure obtained for each input parameter as
shown in Table 2.

In an effort to assess the applicability of the
metric distance measure, the results of the present
method are compared with two existing results
calculated by other typical uncertainty importance
measures, i.e., Iman’s standard deviation [4] and
The
results of calculation by Iman’ s standard deviation

Iman and Hora’ s bivariate [7] measures.

can be found in Tables 1 of reference 4. For Iman
and Hora’ s bivariate measure, Park and Ahn’ s
results in Tables 3 of reference 9 are used for the
comparison. The summary of the results is shown
in Table 3. Table 3 shows that the results
obtained by the metric distance measure proposed
here and two existing measures agree that X is
the most important parameter with respect to the
uncertainty importance. They are also in
agreement about the ranks of top three high
rankers (i.e., the top events of X, Xs, and X ).
The rankings of the remaining parameters except
Xz, Xs, and Xg seem to be unimportant because
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Table 3. Uncertainty Importance Rankings Obtained by the Present and Two Existing

Measures for Example 1

Uncertainty importance measure and their rankings

Iman & Hora' s

Iman’ s
Changed Present Standard deviation bivariate measure®
variable Measure b
measure Roos Rogs
X1 1.98x 102 {6y 2.54x10° (6) 1.07 0.99 {5)
X2 1.31x10?! (1) 7.23x10° 1) 1.25 0.84 (1)
X3 1.68x10% 7 1.51x10% 7 1.01 0.98 (6)
X 5.22x10% @ 4.46x10° @ 1.06 0.98 @
Xs 1.18x10? 2 7.20x10° 2) 1.16 0.94 2
Xe 1.11x 10" 3) 6.05x10% 3 1.13 0.91 3
X7 3.27x10? {5) 2.60x10° (5) 1.07 0.98 @)
®Ranking.

®See the second column of Table 1 in reference 4.
‘See Case 1 of Table 3 in reference 9.

1
—e— Metric Distance Measyre
= tandard Deviation Mdasure
~ - - Bivariate Measure

7
X, X, X, X,

1
Input Parameter

Fig. 3. A Summary Plot of the Uncertainty
Importance Rankings Given in Table 3*
*Only two lines can be seen since the results of metric distance

and standard deviation measures are the same.

distributional changes of the remaining parameters

are negligibly small.
Figure 3 is a summary plot of the uncertainty

importance rankings given in Table 3. The

summary plot is very useful when different
measures are applied to the same problem. The
overall trend of the results by different measures
can be seen clearly.

From Table 3 and Fig. 3, it can be concluded
that the present measure as well as two existing
measures provides good information about the
uncertainty importance for this example in spite of

their different approaches.

4.2. Example 2 : Hypothetical Analytical
Model

In the above example, a typical application of
the present measure for PSA is made. From this
example, however, one could not see a clear
advantage of the present importance measure
over the other measures to which it was
compared. Therefore, a hypothetical non-linear
analytical model with 3 input variables is used in
the present measure to examine the strength and
the advantage of the present measure as follows:

g(X,,X,, X;)=sin X, +asin? X, +bX; sin X, (16)
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Table 4. Uncertainty Importance Rankings Obtained by the Present and Two Existing
Measures for Example 2

Uncertainty importance measure and their rankings

Hora & Iman's

Iman & Hora's

Changed Present Standard deviation bivariate measure
variable Measure
measure Roos Ross
X1 0.6676 (3¢ 10.5989° (1) 0.0608 0.6915 (1)
Xz 0.9809 (1) 9.3750 2) 1.5614 0.6766 (3)
X3 0.6740 (2) 6.2500 (3) 0.1777 0.7191 (2)
? Ranking.

°U; value defined in reference 13.

0.8 4

o4
>
1

Probability
o
=
L

Base Case
- - - Sensitivity Case for X,
----- Sensttivity Case for X,
Sensitivity Case for X

0.2 4

X, X, X))

Fig. 4. Empirical Distributions of g(Xi, Xz, X;) for
the Base Case and the Sensitivity Case of
3 Input Parameters in Example 2

where a and b are constants. lts input probability
density functions are assumed as

1
et when -n<x; <n
n

hi(x)= {
0, when x; <-m, x; > @

The same function was used to investigate the

for i =123 (17)

performance of importance measure and the
effect of the sampling strategy [12-14]. An
uncertainty importance analysis has been carried
out for the above hypothetical analytical model. In
the sensitivity case of this example, the uncertainty
range of input distribution is reduced by a factor of
10. The empirical distributions of the output g(X,

Xa, X3) are obtained using the Monte Carlo
simulations with 1000 sample size for the base
case and its sensitivity cases. The results are
shown in Fig. 4. The constants appearing in Eq.
(16) are a=5 and b=0.1.

From Fig. 4, it can be observed clearly that the
change of X,'s distribution gives the greatest
impact on the change of the output distribution.
Therefore, this example can be used to check the
usefulness of the present measure. The present
and two existing measures adopted in example 1
are used in the calculation of example 2 and the
results are summarized in Table 4. Since Iman’s
standard deviation measure is only valid for
Boolean representation of a fault tree, more
general Hora and Iman’ s standard deviation
measure is considered for the example 2. In Table
4, Homma and Satelli’ s U, value defined in
reference 13 is used to represent Hora and Iman’
s standard deviation measure. The analytical
expression of U, for the analytical model
considered in the example 2 can be seen in Egs.
(19) ~ (21) of reference 13. The value of U, has
the same information with the Hora and Iman's
standard deviation measure about the rank.

Table 4 shows that only the present measure
adequately predicts the highest important ranker
Xz in terms of the relative impact on the change of
the output distribution. Hora and Iman’ s standard
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deviation and Iman and Hora’ s bivariate measures
predict X, as the top ranker. In addition, the
second rank of the standard deviation measure
disagrees with that of the bivariate measure. This
problem seems to be due to the fact that the
bivariate measure do not depends on the overall
output distribution and the standard deviation
measure focuses only on the variance reduction.
This example clearly shows that variance based
importance measures may poorly predict the
entire change of output distribution induced from
the change of input distribution. Park and Ahn’ s
entropy measure may be useful for this kind of
example since their measure also focuses on the
relative impact on the change of the output
distribution. However, their entropy measure has
some disadvantages: For example, the entropy of
normal distribution depends only on its variance.
In addition, fitting procedures are required for real
applications. Data fitting may be another source
of uncertainty.

5. Summary and Conclusions

A simple measure of the uncertainty importance
focusing on the entire change of CDFs has been
developed in the present work. The entire change
of CDFs is quantified using the definition of the
normalized metric distance between two CDFs.
The metric distance measure developed in this
study reflects the relative impact of distributional
changes of inputs on the change of an output
distribution, while most of the existing measures
such as the standard deviation measure reflect the
relative contribution of input uncertainties to an
output uncertainty. To examine the characteristics
of the metric distance measure, analytical
evaluations of four different distributions have
been performed.

In addition, two examples have been chosen to

assess its applicability and strength. In the first
example, a typical application of the present
uncertainty importance measure for PSA has been
made. To show the strength of the present
measure, a hypothetical non-linear analytical
model has been used in the second example. Two
typical existing measures, the standard deviation
and bivariate measures, are used for the
comparison of the results. In general, as shown in
example 1, the present as well as existing
measures may provide good information about the
uncertainty importance. However, the results of
uncertainty importance may be different from one
another depending on the specific problem as can
be seen in example 2. Therefore, using an
appropriate measure is very important in
uncertainty importance analysis.

The standard deviation and bivariate measures
have the limitation of using simple statistics of
output distributions rather than the entire output
distribution. However, the present measure uses
the entire output distributions in the uncertainty
importance analysis. This will be a great
advantage when the given problem is such that
more precise output distribution is needed. The
existing measures as well as the present measure
possess unique strengths and weakness
depending on the objective of their applications.
If one wants to know the information on the
reduction of uncertainty, the existing measures
using the variance (or standard deviation) is
useful. However, when the precise output
distribution is needed, the normalized metric
distance measure developed in the present work
will be more useful to express the uncertainty
importance of PSA results since it expresses the
relative impact of distributional changes of inputs
on the change of an output distribution. In
addition, it is conceptually simple and easy to
calculate.
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Nomenclature

a,b constants used in Eq. (16)

D metric distance

E(Y?) mean of output distribution for the base
case

F cumulative distribution function of Y

filx), falx)
g

Q'EQINJ‘CoQ

arbitrary functions of x

hypothetical non-linear function defined
in Eq. (16)

input probability density function
defined in Eq. (17)

variable defined in Eq. (7)

sample size of Monte Carlo simulation
metric distance measure defined in the
present study

sample size of Monte Carlo simulation
sample index of Monte Carlo
simulation

probability

empirical distribution function of Y
number greater than 1

random variable of input

input

random variable of output

output

the pth quantile of Y

the pth quantile of Y for the sensitivity
case

the pth quantile of Y for the base case
standardized random variable of Y

the pth quantile of Z

shape factor of Y

scale factor of Y

gamma function

delta function defined in Eq. (13)

mean value of Y

standard deviation of Y
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Superscripts/Subscripts

sensitivity case
base case
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