• Title/Summary/Keyword: uncertain input-delay systems

Search Result 22, Processing Time 0.026 seconds

Making Robust Stochastic Stabilizer for Uncertain T-S fuzzy Systems with Input Delay (입력지연을 갖는 불확실 T-S 퍼지 시스템의 강인 디지털 확률적 안정화기 설계)

  • 이호재;박진배;김정찬;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.321-324
    • /
    • 2003
  • This paper discusses a robust stochastic stabilization of uncertain Takagi-Sugeno (T-S) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretixzd T-S fuzzy system is represented by a uncertain discrete-time T-S fuzy system with jumping parameters. The robust stochastic stabilizibility of the uncertain jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Sliding Mode Control with Uncertainty Adaptation for Uncertain Input-Delay Systems (시간지연 시스템에서의 불확실성 추정을 갖는 슬라이딩 모드제어)

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.963-967
    • /
    • 2000
  • This paper deals with a sliding mode control with uncertainty adaptation for the robust stabilization of input-delay systems with unknown uncertainties. A sliding surface including a state predictor is employed to compensate for the effect of the input delay. The proposed method does not need a priori knowledge of upper bounds on the norm of uncertainties, but estimates those upper bounds by adaptation laws based on the sliding surface. Then, a robust control law with the uncertainty adaptation is derived to ensure the existence of the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

Constrained MPC for uncertain time-delayed systems

  • Jeong, Seung-Cheol;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1905-1910
    • /
    • 2003
  • It is well known that parameter uncertainties and time-delays cannot be avoided in practice and result in poor performance and even instability. Nevertheless, to the authors' best knowledge, there exist few results on model predictive control (MPC) handling explicitly uncertain time-delayed systems. In this paper, we present an MPC algorithm for uncertain time-varying systems with input constraints and state-delay. An optimization problem is suggested to find a memoryless state-feedback MPC law and the closed-loop stability is established under feasibility and certain conditions.

  • PDF

Non-fragile Guaranteed Cost Control of Uncertain Nonlinear Systems with Time-varying Delays in State and Control Input (시변 시간 지연을 갖는 불확실한 비선형 시스템의 비약성 보장 비용 제어)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • In this paper, we present a non-fragile guaranteed cost control design method for uncertain nonlinear systems with time varying delays in state and control input, even though the controller gain is perturbed. The uncertain nonlinear term in the systems is norm bounded and the linear matrix inequality(LMI) optimization method is employed as a stability analysis of the systems. We design a robust controller and show the asymptotical stability of uncertain time-varying systems based on Lyapunov method. Also, we guarantee a specific level of performance of the systems. The simulations are carried out to demonstrate the effectiveness of the proposed method.

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF

Position Control of Linear Actuator with Uncertain Time Delay in VDN

  • Kim, Jonghwi;Kiwon Song;Park, Gi-Sang;Park, Gi-Heung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.118.2-118
    • /
    • 2002
  • Uncertain time delay happens when the process reads the sensor data and sends the control input to the plant located at a remote site in distributed control system. As in the case of data network using TCP/IP, VDN that integrates both device network and data network has uncertain tim e delay. Uncertain time delay can cause degradation in stability of distributed control system based on VDN. This paper investigates the transmission characteristic of VDN and suggests a control scheme based on the Smith's predictor to minimize the effect of uncertain time delay. The validity of the proposed control scheme is demonstrated with tracking position control of experiments.

  • PDF

A Robust Sliding Mode Controller for Unmatched Uncertain Severe Sate Time-Delay Systems (큰 상태변수 시간 지연 부정합조건 불확실성 시스템을 위한 강인한 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1894-1899
    • /
    • 2010
  • This note is concerned with a robust sliding mode control(SMC) for a class of unmatched uncertain system with severe commensurate state time delay. The suggested method is extended to the control of severe state time delay systems with unmatched uncertainties except the matched input matrix uncertainty. A transformed sliding surface is proposed and a stabilizing control input is suggested. The closed loop stability together with the existence condition of the sliding mode on the proposed sliding surface is investigated through one Lemma and two Theorems by using the Lyapunov direct method with the concept of the control Lyapunov function instead of complex Lyapunov-Kravoskii functionals. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF