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Abstract: It is well known that parameter uncertainties and time-delays cannot be avoided in practice and result in poor

performance and even instability. Nevertheless, to the authors’ best knowledge, there exist few results on model predictive

control (MPC) handling explicitly uncertain time-delayed systems. In this paper, we present an MPC algorithm for uncertain

time-varying systems with input constraints and state-delay. An optimization problem is suggested to find a memoryless

state-feedback MPC law and the closed-loop stability is established under feasibility and certain conditions.
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1. Introduction

Model predictive control (MPC), also known as receding

horizon control (RHC), has received much attention in con-

trol societies because of its capability of handling both con-

straints and time-varying behaviors and also of its good

tracking performance [1], [2], [3], [4], [5], [6], [7], [8], [9],

[10]. Moreover, it has been recognized as a successful con-

trol strategy in industry fields, especially in chemical process

control such as petrochemical, pulp and paper control. The

basic concept of MPC is to solve an optimization problem

over a fixed number of future time instant at the current

time and to implement the first optimal control law as the

current control law. The procedure is then repeated at the

next time.

It is well known that parameter uncertainties and time-

delays cannot be avoided in practice, especially, in the most

chemical process with slow dynamics where MPC is mainly

applied. Since the parameter uncertainties and time-delays

are frequently the main cause of performance degradation

and instability, there has been increasing interest in the ro-

bust control of uncertain time-delay systems in other control

areas, e.g. guaranteed cost control [11], [12], [13], [14], [15],

[16]. However, until now, there exist few results on MPC

handling explicitly uncertain time-delay the systems in the

literature. Some paper considered the problem but not ex-

plicitly. [6] among them deal with the problem the most

explicitly. In [6], after designing mainly the novel robust

constrained MPC for uncertain systems, the authors argue

that the control scheme can be extended to systems with

delays in a straightforward manner. Of course, this is true

when the delay indices are known. However, when the delay

indices are unknown, it is not straightforward and not easy

to show the feasibility of the on-line optimization problem

and to guarantee the closed-loop stability which is the main

topic of the present paper.

In this paper, we present an MPC algorithm for uncertain

time-varying systems with input constraints and state-delay.

The uncertainty is assumed to be the type of polytopic un-

certainty, and the delay is unknown but its upper bound is

assumed to be known in advance for practical reason. To

find memoryless state-feedback MPC law, an optimization

problem which minimizes a cost function at each sampling

time is considered. After finding the upper bound of the cost

function by assuming certain inequality, the original prob-

lem is relaxed to another optimization problem from which

we derive the final form of optimization problem involving

linear matrix inequalities (LMIs). It is shown that a feasible

solution to the problem at time k is also a feasible solution

to the same problem after the time k under certain condi-

tions. Finally, based on the feasibility and optimality, the

closed-loop stability is established.

The paper is organized as follows. Section 2. states target

systems, assumptions, the associated problem. Section 3.

supplies optimization problem involving LMIs and under

certain conditions, the feasibility and the closed-loop stabil-

ity is established. Section 4.illustrates the performance of the

proposed controller through an example. Finally in Section

5., we make some concluding remarks.

Notation: Notations in this paper are fairly standard. Rn

and Rn×m denote the n-dimensional Euclidean space and the

set of all n×m matrices, respectively. The notation X ≥ Y

and X > Y where X and Y are symmetric matrices means

that X − Y is positive semi-definite and positive definite,

respectively. Inequalities between vectors mean component-

wise inequalities. Finally ||x||W denotes xT Wx.

2. Problem Statements
Consider the following discrete-time systems

x(k + 1) = A(k)x(k) + Ā(k)x(k − d) + B(k)u(k),

x(k) = φ(k), k ∈ [−d∗, 0]
(1)

subject to input constraint

− ū ≤ u(k) ≤ ū, ū ≥ 0, for all k ∈ [0,∞), (2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control, φ(k)

is the initial condition, d is an unknown constant integer

representing the number of delay units in the state, but being

assumed 0 ≤ d ≤ d∗ with a known integer d∗. It is assumed



that the system matrices [A(k) Ā(k) B(k)] are unknown but

belongs to a polytope Ω for all times,. That is,

[A(k) Ā(k) B(k)] ∈ Ω
4
= Co{[A1 Ā1 B1], ..., [Ap Āp Bp]},

(3)

where Co denotes the convex hull and [Ai Āi Bi] are vertices

of the convex hull. It is assumed that the system (1) is

stabilizable for the existence of a stabilizing feedback control,

and that the state x(k) is available at each time k.

The goal of this paper is to find a stabilizing state-feedback

control u(k) = K(k)x(k) for (1) by the MPC strategy. At

each time k, we solve the following min-max problem

min
u(·|k)

max
[A(k) Ā(k) B(k)]∈ Ω

J(k) (4)

subject to

J(k) =

∞∑
j=0

{||x(k + j|k)||Q + ||u(k + j|k)||R} , (5)

− ū ≤ u(k + j|k)(= K(k)x(k + j|k)) ≤ ū, j ∈ [0,∞), (6)

where Q > 0 and R > 0 are given symmetric matrices, and

x(k + j|k) and u(k + j|k) denote predicted variables of the

state and the input, respectively, with x(k|k) = x(k).

Before ending this section, we present a fact which will be

used in the next section.

Fact 2..1: Let us consider the following two optimization

problems

(Q1, X1, Y1) = arg min
Q,X,Y

||x||Q + α

s.t. 0 ≥ F1(Q, X, Y ), ..., 0 ≥ Fn(Q, X, Y ),

(Q2, X2, Y2) = arg min
Q,X,Y

||x||Q + β

s.t. 0 ≥ F1(Q, X, Y ), ..., 0 ≥ Fn(Q, X, Y ),

where Q, X, Y denote optimization variables, α and β de-

note constant terms, and Fi(Q, X, Y ) denotes a function of

Q, X, Y . Suppose that the difference of the two optimization

problems is only α and β. If one of the problems is solvable,

so is the other. Moreover, the solutions of the two problems

are identical, that is, Q1 = Q2, X1 = X2 and Y1 = Y2.

3. Stabilizing MPC for delayed systems with
constraints

Following an approach given in [6], it is easy to derive an

upper bound on the worst value of the cost. Consider a

quadratic function

V (k + j|k) = ||x(k + j|k)||P (k) +

d∑
i=1

||x(k + j − i|k)||Pd(k),

(7)

where P (k) > 0, Pd(k) > 0. If there exist X(k)
4
=

γ(k)P−1(k) > 0, Xd(k)
4
= γ(k)P−1

d (k) > 0, Y (k) =

K(k)X(k) and γ(k) > 0 satisfying the following inequalities




X(k) (∗) (∗) (∗) (∗) (∗)
0 Xd(k) (∗) (∗) (∗) (∗)

M31 ĀσXd(k) X(k) (∗) (∗) (∗)
X(k) 0 0 Xd(k) (∗) (∗)

Q1/2X(k) 0 0 0 γ(k)I (∗)
R1/2Y (k) 0 0 0 0 γ(k)I




≤ 0,

(8)

where M31 = AσX(k) + BσY (k) and σ = 1, ..., p, then the

worst value of the cost J(k) is bounded by

max
[A(k) Ā(k) B(k)]∈ Ω

J(k) ≤ V (k|k), (10)

where

V (k|k)
4
= ||x(k|k)||P (k) +

d∑
i=1

||x(k − i|k)||Pd(k).

3.1. MPC algorithm

Based on (8) and (10), the original min-max problem (4)

can be redefined to the following optimization problem that

minimizes the upper bound on the worst value of the original

cost function J(k) :

P1 : min
K(k),P (k),Pd(k)

V (k|k) s.t. (6), (8). (11)

Unfortunately, we cannot solve the problem P1 directly since

V (k|k) includes the term
∑d

i=1 ||x(k − i|k)||Pd(k), which de-

pends on the unknown constant d. Hence, we consider the

following optimization problem, which shows us an indirect

way to obtain the solution (or the optimizer) of the problem

P1.

P2 : min
K(k),P (k),Pd(k)

Vu(k|k) s.t. (6), (8) (12)

where Vu(k|k) = ||x(k|k)||P (k)+
∑d∗

i=1 ||x(k−i|k)||Pd(k). Here,

we make an assumption that is effective till the end of this

subsection.

A1: The Pd(k) of both P1 and P2 are fixed to a constant

matrix P̄d for all times k.

Under the assumption A1, we shall present two lemmas re-

lated to the property and the feasibility of P1 and P2 and

one theorem for closed-loop stability.

Lemma 3..1: (Equivalence of P1 and P2) If P2 is solvable at

time k, then so is P1, and vice versa. Moreover, feasible

solutions of the two problems are identical. Therefore, we

can obtain the solution of P1 by solving P2.

Proof: Since P̄d is fixed and x(k − i|k), i = 1, ..., d∗ are

known a priori, V (k|k) and Vu(k|k) can be simply rep-

resented by V (k|k) = ||x(k|k)||P (k) + α and V (k|k) =

||x(k|k)||P (k) +β respectively, where α and β are known con-

stant terms. Since the difference of the two problems is only

α and β, by Fact 2.1, we can conclude that if one of the

problems P1 and P2 is feasible at time k, then the other

is feasible at time k, and that feasible solutions of the two

problems are identical.



Lemma 3..2: (Feasibility of P1 and P2) Any feasible solution

of P2 at time k is also a feasible solution of both P1 and

P2 for all times greater than k. Thus, if the problem P2 is

feasible at time k, both P1 and P2 are feasible for all times

greater than k.

Proof: Suppose that a feasible control sequence u(k +

j|k), j ≥ 1 exists in P2 at time k. Then, at the next time

k + 1, choose the following control sequence

u(k + 1 + j|k + 1) = u∗(k + 1 + j|k), j ≥ 0. (13)

The control sequence satisfies the input constraint (6) at time

k + 1, which implies the problem P2 has a feasible solution

at time k + 1. Hence, by induction, if the problem P2 is

feasible at time k, we observe that the problem is always

feasible for all times greater than k. Moreover, by Lemma

3..1, u(k + j|k), j ≥ 1 is a feasible control sequence for the

problem P1 at time k and the rest arguments are same as

those of the problem P2. This completes the proof.

In the following theorem, based on Lemma 3..1 and 3..2, robust

asymptotic stability of the closed-loop system is guaranteed

through the monotonic decreasing property of V (k|k) with

Pd(k) ≡ P̄d.

Theorem 1: (Closed-loop stability) If the optimization

problem P2 is feasible at the initial time k = 0, then the fea-

sible MPC from P2 with Pd(k) ≡ P̄d robustly asymptotically

stabilizes the closed-loop system.

Proof: To prove the closed-loop stability, we will show that

V (k|k) is a strictly decreasing Lyapunov function under A1.

First note that by Lemma 3..2, P1 and P2 are always feasible

when P2 is feasible at the initial time k = 0. Let P ∗(k) and

P ∗(k+1) denote the optimal values of P2 at time k and k+1.

By Lemma 3..1, this implies that P ∗(k) and P ∗(k + 1) are

also optimal for P1 at time k and k + 1, respectively. Thus

we have the following inequality from optimality

||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P̄d

≤ ||x(k + 1|k + 1)||P∗(k) +

d∑
i=1

||x(k + 1− i|k + 1)||P̄d

(14)

since P ∗(k+1) is optimal while P ∗(k) is only feasible at time

k + 1. And from (8), we have

[
||x(k + 1|k)||P∗(k) +

d∑
i=1

||x(k + 1− i|k)||P̄d

]

<

[
||x(k|k)||P∗(k) +

d∑
i=1

||x(k − i|k)||P̄d

] (15)

for any [A(k) Ā(k) B(k)] ∈ Ω. Since x(k + 1|k + 1)

equals [A(k) + B(k)K(k)]x(k|k) + Ā(k)x(k − d|k) for some

[A(k) Ā(k) B(k)] ∈ Ω, and x(k + 1 − i|k + 1) = x(k + 1 −
i|k), i = 1, ..., d, they must also satisfy (15). Combining this

with (14), we have

[
||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P̄d

]

<

[
||x(k|k)||P∗(k) +

d∑
i=1

||x(k − i|k)||P̄d

]

(16)

Thus V (k|k) with Pd(k) ≡ P̄d, i.e., xT (k|k)P ∗(k)x(k|k) +∑d
i=1 xT (k − i|k)P̄dx(k − i|k), is a strictly decreasing Lya-

punov function for the closed-loop system. Since it is

bounded below zero, we conclude that x(k) = x(k|k) goes

to zero as k goes to infinity.

Now, we summarize the proposed stabilizing MPC algorithm

as follows.

Constrained MPC algorithm for uncertain delayed

systems (CMPC-UDS)

(1) (Initialization) at time k = 0, find Pd(0) by solving

the optimization problem P2, and set P̄d ⇐ Pd(0).

(2) (Generic) at time k ≥ 0, find K(k) by solving the

optimization problem P2 with Pd(k) ≡ P̄d. Pd(k) is not

an optimization variable here.

(3) Apply the state-feedback control u(k) = K(k)x(k) to

the system.

(4) At the next time, repeat (2)-(3).

Remark 1: One way to choose P̄d is to solve the problem

P2 temporarily without A1 at the initial time k = 0, and to

set P̄d ≡ Pd(0).

3.2. Modified MPC algorithm

In the previous section, It is shown that the feasible

model predictive control robustly asymptotically stabilizes

the closed-loop system through the monotonic decreasing

property of V (k|k) with Pd(k) ≡ P̄d for all k ≥ 0. How-

ever, it is somewhat conservative to use a constant matrix

P̄d for all times. In this section, the MPC algorithm will

be modified so that P̄d is updated when certain condition is

satisfied.

The following lemma plays an important role in guaranteeing

the stability of the closed-loop system with MPC from the

modified MPC algorithm.

Lemma 3..3: Let P ∗(k) and P ∗(k + 1) denote the optimal

values of P (k) and P (k + 1) for P2 with Pd(k + 1) ≡ P̄d at

time k and k + 1, respectively. Also let P ∗d (k + 1) denotes

the optimal value of Pd(k) for P2 with P (k +1) ≡ P ∗(k +1)

at time k + 1. If the following inequality is satisfied

P ∗d (k + 1) ≤ P̄d (17)



then we have

||x(k|k)||P∗(k) +

d∑
i=1

||x(k − i|k)||P̄d

> ||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P̄d

≥ ||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P∗
d

(k+1).

(18)

Proof: By Lemma 3..1, P ∗(k) and P ∗(k + 1) are also the

optimal values of P (k) and P (k +1) for P1 with Pd(k +1) ≡
P̄d at time k and k+1, respectively. Hence (18) follows from

(16) and (17).

Remark 2: Note that we cannot derive the condition

||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P̄d

≥ ||x(k + 1|k + 1)||P∗(k+1) +

d∑
i=1

||x(k + 1− i|k + 1)||P∗
d

(k+1)

(19)

directly from the optimality since it does not hold here. Thus

we need (17).

Now, based on Lemma 3..3, we propose a modified MPC al-

gorithm.

Modified constrained MPC algorithm for uncer-

tain delayed systems (MCMPC-UDS)

(1) (Initialization) at time k = 0, find Pd(0) by solving

the optimization problem P2, and set P̄d ⇐ Pd(0) and

flag ⇐ 0.

(2) (Generic) at time k ≥ 0, find K(k) and P (k) by solv-

ing the optimization problem P2 with Pd(k) ≡ P̄d (thus

Pd(k) is not an optimization variable at this step), and

set K∗(k) ⇐ K(k) and P ∗(k) ⇐ P (k).

(3) Find K(k) and Pd(k) by solving the optimization

problem P2 with P (k) ≡ P ∗(k) (thus P (k) is not an

optimization variable at this step). If Pd(k) ≤ P̄d, set

K∗(k) ⇐ K(k), P̄d ⇐ Pd(k), flag ⇐ flag + 1. Other-

wise, go to step (5).

(4) If flag ≤ rn, go to step (2). Otherwise, go to step

(5). Here rn is a given fixed integer that represents the

maximum repetition number of (2) and (3).

(5) Apply the state-feedback control u(k) = K∗(k)x(k)

to the system.

(6) At the next time, set flag ⇐ 0 and repeat (2)-(5).

Theorem 2: If the optimization problem P2 is feasible at

the initial time k = 0, then the feasible MPC from MCMPC-

UDS robustly asymptotically stabilizes the closed-loop sys-

tem.

Proof: Step (3) of MCMPC-UDS exists for the update of P̄d.

When P̄d is not updated in step (3), by Theorem 1, V (k|k)

with P̄d decreases monotonically. When Pd(k) ≤ P̄d and

hence P̄d is updated in step (3), the monotonic decreasing

property of V (k|k) with P̄d still holds by Lemma 3..3. Since it

is bounded below zero, we conclude that x(k) = x(k|k) goes

to zero as k goes to infinity.

In the following, the optimization problem P2 is converted to

an optimization problem involving linear matrix inequalities

for the implementation of the proposed MPC.

Lemma 3..4: The optimization problem P2 can be solved by

the following optimization problem

min
γ(k),X(k),Y (k),Z(k),Pd(k)

γ(k) (20)

subject to

0 ≤




1 (∗) (∗) · · · (∗)
x(k|k) X(k) 0 · · · 0

x(k − 1|k) 0 Xd(k) · · · 0
...

. . .
. . .

. . .
...

x(k − d∗|k) 0 0 · · · Xd(k)




, (21)

0 ≤




X(k) (∗) (∗) (∗) (∗) (∗)
0 Xd(k) (∗) (∗) (∗) (∗)

M31 ĀσXd(k) X(k) (∗) (∗) (∗)
X(k) 0 0 Xd(k) (∗) (∗)

Q1/2X(k) 0 0 0 γI (∗)
R1/2Y (k) 0 0 0 0 γI




,

(22)

0 ≤
[

Z(k) Y (k)

Y T (k) X(k)

]
, Zii(k) ≤ ū2

i , i = 1, 2, ..., m, (23)

where M31 = AσX(k) + BσY (k), σ = 1, ..., p,, 0 <

X(k) = γ(k)P−1(k), 0 < Xd(k) = γ(k)P−1
d (k) and Y (k) =

K(k)X(k).

Proof: See Appendix A.

Remark 3: From the modified MPC algorithm MCMPC-

UDS, we can see that if the two conditions of steps (3) and

(4), Pd(k) ≤ P̄d and flag ≤ rn hold, the steps (2) and (3)

are repeated maximally to rn times at each time k. Hence,

the size of rn trade off the computational burdens and the

performance.

Remark 4: In the optimization problem of Lemma 3..4.

when P (k) is not an LMI variable (as in the step (3) of

MCMPC-UDS), the X(k) is replaced by γ(k)P−1(k). And

when Pd(k) is not an LMI variable (as in the step (2) of

MCMPC-UDS), the Xd(k) is replaced by γ(k)P−1
d (k).

4. Numerical example
Consider the uncertain time-varying system with input sat-

uration and time-delay

x(k + 1) = A(k)x(k) + Ā(k)x(k − d) + B(k)u(k),

[A(k) Ā(k) B(k)] ∈ Co{[A1 Ā1 B1], [A2 Ā2 B2]},
|u(k)| ≤ ū = 5, d = 2,

whose system matrices are given

A1 =

[
1 0.9

0.9 0.5

]
, Ā1 =

[
0.1 0

0 0.1

]
, B1 =

[
1

0

]
,

A2 =

[
0.7 0.8

0.05 −0.3

]
, Ā2 =

[
0.05 0

0 0.05

]
, B2 =

[
1

0

]
.



Simulation parameters are as follows; the initial value of the

state is x(0) = [5 1]T ; the upper bound of d is d∗ = 3; the

state and the input weighting matrices are Q = diag(1, 1)

and R = 1.

Simulation results are given in Figure 1 where the states con-

verge to zero as time goes to infinity and the input satisfies

the input constraints (Figure 2). Figure 3 shows how the the

cost vary for rn = 1, 10 and 20, respectively.
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5. Concluding Remarks
In this paper, we presented an MPC algorithm for uncertain

time-varying systems with input constraints and state-delay.

The uncertainty was assumed to be the type of polytopic un-

certainty, and the delay was unknown but its upper bound is

assumed to be known in advance for practical reason. To find

memoryless state-feedback MPC law, an optimization prob-

lem which minimizes a cost function at each sampling time

was considered. After finding the upper bound of the cost

function by assuming certain inequality, the original prob-

lem is relaxed to another optimization problem from which

we derive the final form of optimization problem involving

LMIs. It was shown that a feasible solution to the problem

at time k is also a feasible solution to the same problem af-

ter the time k under certain conditions. Finally, based on

the feasibility and optimality, the closed-loop stability was

established. Through an example, we showed the nice per-

formance of the proposed controller.
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Appendix A

We prove (20), (21) and (23) here. Minimization of Vu(k|k)

is equivalent to

Minimize γ(k) (24)

subject to

γ(k) ≥ ||x(k|k)||P (k) +

d∗∑
i=1

||x(k − i|k)||Pd(k). (25)

By defining X(k) = γ(k)P−1(k) > 0, Xd(k) =

γ(k)P−1
d (k) > 0 and using the Schur complement, (25) is

equivalent to

0 ≤




1 (∗) (∗) · · · (∗)
x(k|k) X(k) 0 · · · 0

x(k − 1|k) 0 Xd(k) · · · 0
...

. . .
. . .

. . .
...

x(k − d∗|k) 0 0 · · · Xd(k)




, (26)

which establishes (20) and (21).

Next, we relax the input constraint (6) by using the so called

invariant ellipsoid. To this ends, let us define an ellipsoid

EP (k) centered at the origin

EP (k) = {ξ | ξT P (k)ξ ≤ γ(k)}. (27)

The following lemma help us to relax the input constraint

(6).

Lemma 5..1: Suppose that V (k|k) ≤ γ(k), and that there ex-

ist a K(k) and a positive definite matrix P (k) satisfying both

(8) and the following LMIs

[
Z(k) K(k)

KT (k) γ−1(k)P (k)

]
≥ 0, Zii(k) ≤ ū2

i , (28)

where i = 1, 2, ..., m and ūi is the ith element of ū. Then

the state-feedback controller u(k + j|k) = K(k)x(k + j|k)

stabilizes the system for all x(k|k) ∈ EP (k) while satisfying

the input constraints (2). And the resultant state trajectory

x(k + j|k) always remains in the region EP (k).

Proof: Under the assumptions, it is apparent that xT (k +

j|k)P (k)x(k+j|k) < γ(k) for all j ≥ 0. Hence we can rewrite

the input constraints (6) as follows (see [17]):

|u(k + j|k)|2 = |K(k)x(k + j|k)|2

= |K(k)P−1/2(k)P 1/2(k)x(k + j|k)|2

≤ ||K(k)P−1/2(k)||22||P 1/2(k)x(k + j|k)||22
= K(k)P−1(k)KT (k)xT (k + j|k)P (k)x(k + j|k)

< K(k)P−1(k)KT (k)γ(k) ≤ ū2,

(29)

which is followed by the inequality (28). Therefore, if

V (k|k) ≤ γ(k) and there exist a K(k) and a positive def-

inite matrix P (k) satisfying both (8) and (28), the predicted

state remains in EP (k) for all times while satisfying the input

constraints.

We can utilize the results of Lemma 5..1 to incorporate the

input constraints into optimization problem as sufficient LMI

constraints. Pre- and post-multiplying by

[
I 0

0 γ(k)P−1(k)

]
(30)

and substituting X(k) = γ(k)P−1(k), Xd(k) =

γ(k)P−1
d (k) > 0 and Y (k) = K(k)X(k), we see that (28)

is equivalent to (23). This completes the proof.
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