• Title/Summary/Keyword: unbounded solution

Search Result 48, Processing Time 0.023 seconds

STABILITY PROPERTIES IN NONLINEAR DISCRETE VOLTERRA EQUATIONS WITH UNBOUNDED DELAY

  • Choi, Sung Kyu;Kim, Yunhee;Koo, Namjip;Yun, Chanmi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.197-211
    • /
    • 2013
  • We study some stability properties in discrete Volterra equations by employing to change Yoshizawa's results in [13] for the nonlinear equations into results for the nonlinear discrete Volterra equations with unbounded delay.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

GLOBAL ATTRACTOR FOR A SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY IN UNBOUNDED DOMAINS

  • Tu, Nguyen Xuan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.423-443
    • /
    • 2022
  • We study the existence and long-time behavior of weak solutions to a class of strongly degenerate semilinear parabolic equations with exponential nonlinearities on ℝN. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of a global attractor is proved by combining the tail estimates method and the asymptotic a priori estimate method.

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

THE EXPONENTIAL GROWTH AND DECAY PROPERTIES FOR SOLUTIONS TO ELLIPTIC EQUATIONS IN UNBOUNDED CYLINDERS

  • Wang, Lidan;Wang, Lihe;Zhou, Chunqin
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1573-1590
    • /
    • 2020
  • In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x)Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

EXISTENCE OF THE THIRD POSITIVE RADIAL SOLUTION OF A SEMILINEAR ELLIPTIC PROBLEM ON AN UNBOUNDED DOMAIN

  • Ko, Bong-Soo;Lee, Yong-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.439-460
    • /
    • 2002
  • We prove the multiplicity of ordered positive radial solutions for a semilinear elliptic problem defined on an exterior domain. The key argument is to prove the existence of the third solution in presence of two known solutions. For this, we obtain some partial results related to three solutions theorem for certain singular boundary value problems. Proof are mainly based on the upper and lower solutions method and degree theory.