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STABILITY PROPERTIES IN NONLINEAR DISCRETE
VOLTERRA EQUATIONS WITH UNBOUNDED DELAY

Sung Kyu Choi*, Yunhee Kim**, Namjip Koo***, and Chanmi
Yun****

Abstract. We study some stability properties in discrete Volterra
equations by employing to change Yoshizawa’s results in [13] for the
nonlinear equations into results for the nonlinear discrete Volterra
equations with unbounded delay.

1. Introduction

Consider the discrete Volterra equation with unbounded delay

x(n + 1) = f(n, x(n)) +
n∑

j=−∞
B(n, j, x(j), x(n)), n ∈ Z+, (1.1)

where f : Z × Rd → Rd is continuous in x ∈ Rd for every n ∈ Z, and
B : Z × Z × Rd × Rd → Rd is continuous in x, y ∈ Rd for every j, n ∈
Z, j ≤ n. Eq. (1.1) is a discrete analogue of the integro-differential
equation

x′(t) = f̂(t, x(t)) +
∫ 0

−∞
F (t, s, x(t + s), x(t))ds, (1.2)

where f̂ : R× Rn → Rn is continuous and F : R× R− ×Rn × Rn → Rn

is continuous.
In [5], Hamaya studied the relationship between total stability and

stability under disturbances from hull for Eq. (1.2).
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Song and Tian [10] investigated the existence of periodic and almost
periodic solutions for Eq. (1.1) by means of (K, ρ)-stability conditions.
Their results are to extend results of Hamaya [4] to discrete Volterra
equations. Also, Song [11] proved that if the bounded solution of (1.1)
is uniformly asymptotically stable, then (1.1) has an almost periodic
solution.

Choi and Koo [2] investigated the existence of an almost periodic so-
lution of (1.1) as a discretization of the Hamaya’s results in [5]. Also,
Choi et al. [3] studied the total stability for the discrete Volterra equa-
tion

x(n + 1) = f(n, x(n)) +
0∑

j=−∞
B(n, j, x(n + j), x(n)) + h(n, xn). (1.3)

Sell [9] introduced the concept of weak uniform asymptotic stability
to obtain the existence theorem for almost periodic solutions in ordinary
differential equations. In [12], Xia and Cheng studied the existence of
almost periodic solutions for difference equation by using the concept of
global quasi-uniform asymptotic stability.

Hamaya [5] showed that two concepts of (K, ρ)-weak uniform asymp-
totic stability and (K, ρ)-uniform asymptotic stability for (1.1) are equiv-
alent. Moreover, he obtained the existence of almost periodic solutions
in (1.1) by using (K, ρ)-weak uniform asymptotic stability.

The space BC which consists of all bounded functions on R− =
(−∞, 0] is one of the important classes for the space of initial func-
tions in the theory of functional differential equations with unbounded
delay as well as integrodifferential equations. In connection with the
stability problems, there are two ways to provide the metric structure in
BC. One way is to provide it with the supremum norm, and the other
is of compact open topology induced by the ρ-metric. So there are two
stability concepts referred to as the BC-stabilities and the ρ-stabilities,
respectively. In [8], Murakami and Yoshizawa investigated the relation-
ships between BC-stabilities and ρ-stabilities in functional differential
equations with unbounded delay.

In this paper, we study some stability properties for (1.1) by employ-
ing to change Yoshizawa’s results in [13] for the nonlinear equations into
results for the discrete Volterra equations with unbounded delay. Also,
we investigate the BS-s.d.(stability under disturbance) and ρ-s.d. for
(1.1).
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2. Preliminaries

In what follows, we denote by R, R+, R−, respectively, the set of real
numbers, the set of nonnegative real numbers, and the set of nonpositive
real numbers. Also, we denote by Z, Z+, Z−, the set of integers, the set
of nonnegative integers, and the set of nonpositive integers, respectively.
Let Rd denote d-dimensional Euclidean space with a norm | · |.

Definition 2.1. A continuous function f̂ : R × Rn → Rn is said to
be almost periodic in t ∈ R uniformly for x ∈ Rn if for any ε > 0 there
corresponds a number l = l(ε) > 0 such that any interval of length l
contains a number τ for which

|f̂(t + τ, x)− f̂(t, x)| < ε

for all t ∈ R and x ∈ Rn.

Let F (t, s, x, y) be a function which is defined and continuous for
t ∈ R and (s, x, y) ∈ R∗ = R− × Rn × Rn.

Definition 2.2. F (t, s, x, y) is said to be almost periodic in t uni-
formly for (s, x, y) ∈ R∗ if for any ε > 0 and any compact set K∗ ⊂ R∗,
there exists an L = L(ε,K∗) > 0 such that any interval of length L
contains a τ for which

|F (t + τ, s, x, y)− F (t, s, x, y)| < ε

for all t ∈ R and all (s, x, y) ∈ K∗.

Definition 2.3. A continuous function f : Z×Rd → Rd is said to be
almost periodic in n ∈ Z uniformly for x ∈ Rd if for every ε > 0 and every
compact set K ⊂ Rd, there corresponds an integer N = N(ε,K) > 0
such that among N consecutive integers there is one, here denoted by
p, such that

|f(n + p, x)− f(n, x)| < ε

for all n ∈ Z, uniformly for x ∈ Rd.

Definition 2.4. A set Σ ⊂ Z∗ = Z−×Rd×Rd is said to be compact
if there exists a finite integer set ∆ ⊂ Z− and compact set Θ ⊂ Rd×Rd

such that Σ = ∆×Θ.

Definition 2.5. Let B : Z × Z × Rd × Rd → Rd be continuous for
x, y ∈ Rd, for any j, n ∈ Z, j ≤ n. B(n, j, x, y) is said to be almost
periodic in n uniformly for (j, x, y) ∈ Z∗ if for any ε > 0 and any
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compact set K∗ ⊂ Z∗, there exists a number l = l(ε,K∗) > 0 such that
any discrete interval of length l contains a τ for which

|B(n + τ, j, x, y)−B(n, j, x, y)| < ε

for all n ∈ Z and all (j, x, y) ∈ K∗.

For the basic results of almost periodic functions, see [14].
Let BS = BS(Z−,Rd) denote the space of all Rd-valued bounded

functions on Z− with

|φ|BS = sup
n∈Z−

|φ(n)| < ∞, φ ∈ BS.

Let x : {n ∈ Z : n ≤ k} → Rd for any integer k. For any n ≤ k, we
define xn : Z− → Rd by

xn(j) = x(n + j), j ≤ 0.

Consider the discrete Volterra equation with unbounded delay

x(n + 1) = f(n, x(n)) +
n∑

j=−∞
B(n, j, x(j), x(n)), n ∈ Z+, (2.1)

= f(n, x(n)) +
0∑

j=−∞
B(n, n + j, x(n + j), x(n)),

where f : Z × Rd → Rd is continuous in x ∈ Rd for every n ∈ Z and is
almost periodic in n ∈ Z uniformly for x ∈ Rd, B : Z×Z−×Rd×Rd → Rd

is continuous in x, y ∈ Rd for any j ≤ n ∈ Z and is almost periodic in
n uniformly for (j, x, y) ∈ Z∗. We assume that, given φ ∈ BS(Z−,Rd),
there is a solution x of (2.1) such that x(n) = φ(n) for n ∈ Z−, passing
through (0, φ). Denote by this solution x(n) = x(n, φ).

Let K be any compact subset of Rd such that φ(j) ∈ K for all j ≤ 0
and x(n) = x(n, φ) ∈ K for all n ≥ 1.

For any φ, ψ ∈ BS(Z−,Rd), we set

ρ(φ, ψ) =
∞∑

q=0

ρq(φ, ψ)
2q[1 + ρq(φ, ψ)]

, (2.2)

where ρq(φ, ψ) = max
−q≤m≤0

|φ(m)− ψ(m)|, q ≥ 0. Then ρ defines a metric

on the space BS(Z−,Rd). Note that the induced topology by ρ is the
same as the topology of convergence on any finite subset of Z− [8].
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In view of almost periodicity, for any sequence (n′k) ⊂ Z+ with n′k →
∞ as k →∞, there exists a subsequence (nk) ⊂ (n′k) such that

f(n + nk, x) → g(n, x) (2.3)

uniformly on Z× S for any compact set S ⊂ Rd,

B(n + nk, n + l + nk, x, y) → D(n, n + l, x, y) (2.4)

uniformly on Z× S∗ for any compact set S∗ ⊂ Z∗, g(n, x) and D(n, n +
l, x, y) are also almost periodic in n uniformly for x ∈ Rd, and almost
periodic in n uniformly for (j, x, y) ∈ Z∗, respectively. We define

Ω(f,B) = {(g, D) : (2.3) and (2.4) hold for some sequence
(nk) ⊂ Z+ with nk →∞ as k →∞}. (2.5)

Note that (f, B) ∈ Ω(f,B) and for any (g, D) ∈ Ω(f,B), we can assume
the almost periodicity of g and D, respectively [8].

Definition 2.6. If (g,D) ∈ Ω(f, B), then the equation

x(n + 1) = g(n, x(n)) +
n∑

j=−∞
D(n, j, x(j), x(n)), n ∈ Z+ (2.6)

is called the limiting equation of (2.1).

For the compact set K in Rd, (p, P ) ∈ Ω(f,B), (q, Q) ∈ H(f,B), we
define π(p, q) and π(P,Q) by

π(p, q) = sup{|p(n, x)− q(n, x)| : n ∈ Z, x ∈ K},

π(P,Q) =
∞∑

N=1

πN (P,Q)
2N [1 + πN (P, Q)]

, (2.7)

where

πN (P, Q) = sup{|P (n, j, x, y)−Q(n, j, x, y)| :
n ∈ Z, j ∈ [−N, 0], x, y ∈ K}, (2.8)

and

π((p, P ), (q, Q)) = max{π(p, q), π(P,Q)},
respectively. This definition is a discrete analogue of Hamaya’s definition
in [5].

We recall the definitions of various stabilities in [7].

Definition 2.7. The bounded solution u(n) of Eq. (1.1) is said to
be
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(i) (K, ρ)-stable (in short, (K, ρ)-S) if for any ε > 0 there exists a
δ = δ(n0, ε) > 0 such that if n0 ≥ 0 and ρ(xn0 , un0) < δ, then

ρ(xn, un) < ε, n ≥ n0,

where x(n) is a solution of (1.1) through (n0, φ) such that xn0(s) =
φ(s) ∈ K for all s ≤ 0.

(ii) (K, ρ)-uniformly stable ((K, ρ)-US) if for any ε > 0 there exists a
δ = δ(ε) > 0 such that if n0 ≥ 0 and ρ(xn0 , un0) < δ, then

ρ(xn, un) < ε, n ≥ n0,

where x(n) is a solution of (1.1) through (n0, φ) such that xn0(s) =
φ(s) ∈ K for all s ≤ 0.

(iii) (K, ρ)-equi asymptotically stable ((K, ρ)-EqAS) if it is (K, ρ)-S and
for any ε > 0 there exists a δ0 = δ0(n0) > 0 and a T = T (n0, ε) > 0
such that if n0 ≥ 0 and ρ(xn0 , un0) < δ0, then

ρ(xn, un) < ε, n ≥ n0 + T,

where x(n) is a solution of (1.1) through (n0, φ) such that xn0(s) =
φ(s) ∈ K for all s ≤ 0.

(iv) (K, ρ)-weakly uniformly asymptotically stable ((K, ρ)-WUAS) if it
is (K, ρ)-US and there exists a δ0 > 0 such that if n0 ≥ 0 and
ρ(xn0 , un0) < δ0, then

ρ(xn, un) → 0 as n →∞,

where x(n) is a solution of (1.1) through (n0, φ) such that xn0(s) =
φ(s) ∈ K, s ≤ 0.

(v) (K, ρ)-uniformly asymptotically stable ((K, ρ)-UAS) if it is (K, ρ)-
US and if the δ0 and the T in the above (iii) are of independent of
n0.

Definition 2.8. The bounded solution x(n) of (2.1) is said to be
BS- stable under disturbances from Ω(f,B) with respect to K (in short,
BS-s.d.Ω(f,B)) if for any ε > 0, there exists an η = η(ε) > 0 such that
if (g, D) ∈ Ω(f, B) with π((f, B), (g, D)) < η and |xn0 − un0 |BS < η for
some n0 ≥ 0, then

|xn − un|BS < ε, n ≥ n0,

where x(n) is a solution of the limiting equation (2.6), which passes
through (n0, φ) such that xn0(j) = φ(j) ∈ K, j ≤ 0.

Definition 2.9. The bounded solution x(n) of (2.1) is said to be
(K, ρ)-stable under disturbances from Ω(f,B) (in short, (K, ρ)-s.d.Ω(f,B))
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if for any ε > 0, there exists an η = η(ε) > 0 such that if (g, D) ∈ Ω(f,B)
with π((f, B), (g, D)) < η and ρ(xn0 , un0) < η for some n0 ≥ 0, then

ρ(xn, un) < ε, n ≥ n0,

where x(n) is a solution of the limiting equation (2.6), which passes
through (n0, φ) such that xn0(j) = φ(j) ∈ K, j ≤ 0.

Definition 2.10. The bounded solution x(n) of (2.1) is said to be
((K, ρ),Rd)-stable under disturbances from Ω(f,B) (in short, ((K, ρ),Rd)-
s.d.Ω(f,B)) if for any ε > 0, there exists an η = η(ε) > 0 such that if
(g,D) ∈ Ω(f, B) with π((f, B), (g, D)) < η and |xn0 −un0 | < η for some
n0 ≥ 0, then

|x(n)− u(n)| < ε, n ≥ n0,

where x(n) is a solution of the limiting equation (2.6), which passes
through (n0, φ) such that xn0(j) = φ(j) ∈ K, j ≤ 0.

Remark 2.11. The (K, ρ)-s.d.Ω(f,B) implies the BS-s.d.Ω(f,B) be-
cause of ρ(φ, ψ) ≤ |φ− ψ|BS for φ, ψ ∈ BS(Z−,Rd).

3. Main results

We consider the discrete Volterra equations with unbounded delay

x(n + 1) = f(n, x(n)) +
0∑

j=−∞
B(n, j, x(j), x(n)), (3.1)

where f : Z × Rd → Rd is continuous at second variable x ∈ Rd with
f(n, 0) = 0 and B : Z×Z− ×Rd ×Rd → Rd is continuous for x, y ∈ Rd.
We denote by x(n) = x(n, n0, x0) a solution of (3.1) through (n0, x0).

Theorem 3.1. Let u(n) be a bounded solution of Eq. (3.1), that is,
for some M > 0, |u(n)| ≤ M, n ≥ 0. If u(n) is (K, ρ)-WUAS, then it is
(K, ρ)-EqAS.

Proof. Since u(n) is (K, ρ)-US, it is (K, ρ)-S.
We show that for any ε > 0 there exists a T = T (n0, ε) > 0 such that

if n0 ≥ 0 and ρ(xn0 , un0) < δ0, then

ρ(xn, un) < ε, n ≥ n0 + T,

where x(n) is a solution of (3.1) through (n0, φ) such that xn0(s) =
φ(s), s ≤ 0. Suppose that there does not exist such T . Then there exist



204 Sung Kyu Choi, Yunhee Kim, Namjip Koo, and Chanmi Yun

an ε > 0, an n0 ≥ 0, and sequences (xk) with xk = x(nk, n0, xk), (nk)
with nk →∞ as k →∞ such that

ρ(xk
n0

, un0) < δ0

and

ρ(unk
, xk

nk
) ≥ ε, (3.2)

ρ(un, xk
n) < ε, n ∈ [n1, nk),

where xk(n) is a solution of (3.1) such that xk
nk

(s) ∈ K for s ≤ 0 and
xk(n) ∈ K on Z+. Note that the sequence (xk(n)) is uniformly bounded.
Then there exists a solution x(n) of (3.1) defined for all n ≥ n0 such
that

ρ(un0 , xn) ≤ δ0.

Moreover, a subsequence of (xk(n)) tends to x(n) uniformly on any
compact interval. Since every solution tends to u(n) as n → ∞, there
exists an n1 such that

ρ(un1 , xn1) <
1
2
δ(ε), (3.3)

where δ(·) is the number given in (K, ρ)-US. We denote by (xk(n)) the
subsequence again. Then we have

ρ(xn1 , x
k
n1

) <
1
2
δ(ε) (3.4)

for sufficiently large k. From (3.3) and (3.4), we obtain

ρ(xk
n1

, un1) < δ(ε).

By the uniform stability of u(n), we have

ρ(xk
n, un) < ε, n ≥ n1,

which contradicts (3.2). This completes the proof.

Theorem 3.2. Suppose that f(n, x) in (3.1) is ω-periodic in n. We
assume the zero solution of Eq. (3.1). If the bounded solution u(n) of
(3.1) is (K, ρ)-WUAS, then it is (K, ρ)-UAS.

Proof. Assume that there exists an M > 0 such that |u(n)| ≤ M .
Since u(n) is (K, ρ)-US, there exists a δ∗0 > 0 such that if n0 ≥ 0 and
ρ(xn0 , un0) < δ∗0, then

ρ(xn, un) <
δ0

2
, n ≥ n0,
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where δ0 is the number for (K, ρ)-WUAS of u(n) and x(n) is a solution
of (3.1) through (n0, φ) such that xn0(s) = φ(s) ∈ K for s ≤ 0.

Suppose that u(n) is not (K, ρ)-UAS. Then there exist an ε > 0, and
sequences (kj) ⊂ Z+ with kj → ∞ as j → ∞, (xkj ) with xkj (n) =
x(n, kj , xkj

), (τkj
) with τkj

→∞ as j →∞ such that

ρ(xkj , ukjω) <
δ0

2
(3.5)

ρ(xkj
τkj

, ukjω+τkj
) ≥ ε. (3.6)

Since |u(kjω)| ≤ M , there exist a sequence (mj) ⊂ (kj) with mj → ∞
as j →∞ and a function u0 such that umjω → u0. Then there exists an
integer p > 0 such that

ρ(umjω, u0) <
δ0

4
, j ≥ p.

Thus we obtain

ρ(umjω, umpω) <
δ0

2
, j ≥ p. (3.7)

Form (3.5) with kj = mj and (3.7), we have

ρ(xmj , umpω) < δ0. (3.8)

In view of Theorem 3.1, there exists a T = T (mpω, ε
2) > 0 such that

ρ(x̃n, un) <
ε

2
, n ≥ mpω + T

and

ρ(˜̃xn, un) <
ε

2
, n ≥ mpω + T,

where x̃(n) = x(n,mpω, u(mjω)) and ˜̃x(n) = x(n, mpω, xmj ). Then it
follows that

ρ(˜̃xn, x̃n) < ε, n ≥ mpω + T. (3.9)

By (3.9), we have

ρ(xmj , un) < ε, n ≥ mjω + T.

This contradicts (3.6), because T = T (mpω, ε
2) depends only on ε. This

proves the theorem.

Theorem 3.3. Suppose that f(n, x) in (3.1) is almost periodic in n
uniformly for x ∈ Rd. If the solution u(n) of (3.1) is (K, ρ)-WUAS, then
it is (K, ρ)-UAS.
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Proof. Note that u(n) is (K, ρ)-US. Then there exists a δ0 = δ(δ0) > 0
such that if ρ(xn0 , un0) < δ, then

ρ(xn, un) < δ0, n ≥ n0 ≥ 0,

where δ0 is the number given in (K, ρ)-WUAS and x(n) is a solution of
(3.1) through (n0, φ) such that xn0(s) = φ(s) ∈ K for s ≤ 0.

We show that for ε > 0 there exists a T = T (ε) > 0 such that if
ρ(xn0 , un0) < δ(δ0) for n0 ≥ 0, then

ρ(xn1 , un) < δ(ε), n0 ≤ n1 ≤ n0 + T

for some n1, where δ(·) is the number for (K, ρ)-US of u(n). Then we
obtain

ρ(xn, un) < ε, n ≥ n0 + T,

that is, u(n) is (K, ρ)-UAS. Suppose that there is no such T . Then
for any k ≥ 1, there exist sequences (xk) with xk(n) = x(n, k, xk) and
(nk) ⊂ Z+ such that

ρ(xk
n0

, un0) < δ(δ0)

and

ρ(xk
nk

, unk
) ≥ δ(ε), nk ≤ n ≤ nk + k.

Let yk(n) = x(n + nk, nk, xk). Then yk(n) is a solution of

x(n + nk + 1) = f(n + nk, x(n + nk))

+
0∑

j=−∞
B(n + nk, j, x(j), x(n + nk)), (3.10)

through (0, xk) and

ρ(yk
n, un) < δ(ε), 0 ≤ n ≤ k.

Note that

ρ(xk
n0

, un0) < δ(δ0).

Since f(n, x) is almost periodic in n uniformly for x ∈ Rd, there exist
x0, g(n, x), z(n), (kj) ⊂ Z+ such that

xkj → x0,

f(n + nkj , x) → g(n, x)

uniformly on Z+ ×K, and

ykj (n) → z(n)
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uniformly on any compact interval on Z+, where z(n) is a solution of
the limiting equation

x(n+1) = g(n, x(n))+
0∑

j=−∞
D(n, j, x(j), x(n)), (g, D) ∈ Ω(f, B) (3.11)

through (0, x0). For any n ≥ 0, there exists a j sufficiently large so that

ρ(un, y
kj
n ) + ρ(ykj

n , zn) ≤ ρ(un, zn).

Note that for large j,

ρ(ykj
n , un) ≥ δ(ε)

and

ρ(ykj
n , zn) <

δ(ε)
2

.

Thus we have

ρ(un, zn) ≥ δ(ε)
2

, n ≥ 0. (3.12)

Clearly,

ρ(un, zn) ≤ δ0, n ≥ 0. (3.13)

Since (f, B) ∈ Ω(g,D), there exists a sequence (τk) with τk → ∞ as
k →∞ such that

g(n + τk, x) → f(n, x)

uniformly for n ∈ Z and x ∈ S = {x ∈ Rd : |x| ≤ δ0} as k →∞. We set
ηk(n) = z(n + τk). Then ηk(n) is a solution of

x(n + τk + 1) = g(n + τk, x) +
0∑

j=−∞
D(n + τk, j, x(j), x(n + τk)) (3.14)

through (0, z(τk)), and (ηk(n)) is uniformly bounded by (3.13). There-
fore there exists a subsequence (τkj ) ⊂ (τk) such that

g(n + τkj , x) → f(n, x)

uniformly for n ∈ Z and x ∈ S, and

ηkj (n) → ξ(n)
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on any compact interval of Z+, where ξ(n) is a solution of (3.1). Then
for large j, we have

ρ(ξn, un) ≥ ρ(ηkj
n , un) + ρ(ηkj

n , ξn)

≥ δ(ε)
2

+
δ(ε)
4

=
3δ(ε)

4
(3.15)

because τkj > 0 for j sufficiently large and

ρ(ηkj
n , un) = ρ(z

τkj
n , un) ≥ δ(ε)

2
by (3.12). From (3.13), we have |ξ(0)| ≤ δ0. It follows that

ρ(ξn, un) → 0

as n →∞ which contradicts (3.15). This completes the proof.

We assume the following:
(H1) f : Z×Rd → Rd is continuous in x ∈ Rd for every n ∈ Z and is

almost periodic in n ∈ Z uniformly for x ∈ Rd.
(H2) B : Z×Z∗ → Rd is continuous in x, y ∈ Rd for any n ∈ Z, j ∈ Z−

and is almost periodic in n ∈ Z uniformly for (j, x, y) ∈ Z∗. Moreover,
for any ε > 0 and τ > 0, there exists a number M = M(ε, τ) > 0 such
that

−M∑

j=−∞
|B(n, j, x(n + j), x(n))| < ε

for all n ∈ Z whenever |x(j)| ≤ τ, j ∈ Z−.
(H3) Eq. (3.1) has a bounded solution u(n), that is, |u(n)| ≤ c for

some c > 0, passing through (0, u0), u0 ∈ BS(Z−,Rd).

Theorem 3.4. For Eq. (3.1) suppose that (H1),(H2), and (H3).
Assume that the bounded solution u(n) of (3.1) is BS-s.d.Ω(f,B). Then
u(n) is (K, ρ)-s.d.Ω(f, B) if and only if it is ((K, ρ),Rd)-s.d.Ω(f,B).

Proof. (⇒) It is obvious.
(⇐) Let ε > 0, (τ, φ) ∈ Z+ × BS(Z−,Rd), and (g, D) ∈ Ω(f,B)

such that φ(s) ∈ K for s ≤ 0, π((f, B), (g, D)) < η, and ρ(φ, uτ ) < η,
where η(·) is the one for ((K, ρ),Rd)-s.d.Ω(f,B) of u(n). We show that
ρ(xn, un) < ε, where x(n) is a solution of the limiting equation of (3.1),
passing through (τ, φ).

Since u(n) is BS-s.d.Ω(f, B), we have

|x(n)− u(n)| < ε, n ≥ τ. (3.16)
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Note that

ρ(xn, un) =
∞∑

j=1

ρj(xn, un)
2j [1 + ρj(xn, un)]

,

where

ρj(xn, un) = sup
−j≤s≤0

|xn(s)− un(s)| = |xn − un|j .

We estimate |xn − un|j .
Suppose that j ≤ n− τ . Then, by (3.16),

|xn − un|j = sup
−j≤s≤0

|x(n + s)− u(n + s)| < ε. (3.17)

Suppose that j ≥ n− τ . From (3.16), we have

|xn − un|j = max{ sup
−j≤s≤τ−n

|x(n + s)− u(n + s)|,

sup
τ−n≤s≤0

|x(n + s)− u(n + s)|}

≤ max{ sup
−j≤θ≤0

|φ(θ)− u(τ + θ)|, sup
τ≤θ

|x(θ)− u(θ)|}

< |φ− uτ |j + ε.

Thus we obtain

ρ(xn, un) =
k∑

j=1

|xn − un|j
2j [1 + |xn − un|j)] +

∞∑

j=k+1

|xn − un|j
2j [1 + |xn − un|j)]

<
k∑

j=1

ε

2j(1 + ε)
+

∞∑

j=k+1

|φ− uτ |j + ε

2j [1 + |φ− uτ |j + ε]

< ε + η.

Therefore u(n) is (K, ρ)-s.d.Ω(f, B) with δ( ·2). This completes the proof.

Theorem 3.5. Suppose that (H1), (H2), and (H3) for Eq. (3.1). If
the bounded solution u(n) of (3.1) is (K, ρ)-s.d.Ω(f, B), then (3.1) has
an almost periodic solution.

Proof. In view of [6, Theorem 2] u(n) is asymptotically almost peri-
odic. Then u(n) is almost periodic by [2, Theorem 3.2].

Remark 3.6. In Theorem 3.2, if u(n) is (K, ρ)-totally stable, then
(3.1) has an almost periodic solution by [2, Theorem 3.8].
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Remark 3.7. For the functional difference equation

x(n + 1) = f(n, xn), n ∈ Z+,

where f : Z+ × B → Rd and B is the abstract phase space in [6],
Hamaya [6] proved that BS-s.d.Ω(f) implies (K, ρ)-s.d.Ω(f). This is
the discretization of the result about the functional differential equation

x′(t) = h(t, xt), t ∈ R+,

where h : R+ ×B → Rn in [8].
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