EXISTENCE OF MILD SOLUTIONS OF PARTIAL NEUTRAL INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

Sung Kyu Choi*, Youn Hee Kim**, and Namjip Koo***

Abstract

We study the existence of mild solutions of partial neutral integrodifferential equations with unbounded delay by using the fixed point criterion for condensing operators.

1. Introduction

In this paper, we investigate the existence of mild solutions for the partial neutral integrodifferential equation with unbounded delay described in the form

$$
\left\{\begin{array}{l}
\frac{d D\left(t, u_{t}\right)}{d t}=A D\left(t, u_{t}\right)+\int_{0}^{t} B(t-s) D\left(s, u_{s}\right) d s+g\left(t, u_{t}\right), 0 \leq t \leq a, \tag{1.1}\\
u(0)=\varphi \in \mathcal{B},
\end{array}\right.
$$

where $A: D(A) \subset X \rightarrow X$ and $B(t): D(B(t)) \subset X \rightarrow X, t \geq 0$, are closed linear operators; X is a Banach space; the history $x_{t}:(-\infty, 0] \rightarrow$ X defined by $x_{t}(\theta)=x(t+\theta)$, belongs to the abstract phase space by Hale and Kato: $D(t, \varphi)=\varphi(0)+f(t, \varphi)$ and $g:[0, a] \times \mathcal{B} \rightarrow X$ are appropriate functions.

For the description of heat conduction in materials with fading memory, we use the partial neutral integrodifferential equation with unbounded delay [3]. In the classic theory of heat conduction, it is assumed that the internal energy and the heat flux depend linearly on the temperature $u(\cdot)$ and on its gradient $\nabla u(\cdot)$. Under these conditions, the classic heat equation describes sufficiently well the evolution of the

[^0]temperature in different type of materials. But this description is unsatisfatory in materials with fading memory. The next system has been frequently used to describe this phenomena:
\[

\left\{$$
\begin{array}{l}
\frac{d}{d t}\left[c_{1} u(t, x)+\int_{-\infty}^{t} k_{1}(t-s) u(s, x) d s\right]=c_{2} \Delta u(t, x)+\int_{-\infty}^{t} k_{2}(t-s) \Delta u(s, x) d s, \\
u(t, x)=0, x \in \partial \Omega .
\end{array}
$$\right.
\]

Here, $\Omega \subset \mathbb{R}^{n}$ is open bounded with smooth boundary: $(t, x) \in \mathbb{R}^{+} \times \Omega$; $u(t, x)$ represents the temperature in x at time $t ; c_{1}, c_{2}$ are physical constants and $k_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are the internal energy and the heat flux relaxation, respectively. By assuming that the solution $u(\cdot)$ is known on $\mathbb{R}^{-}, k_{1}=k_{2}$ and defining $B(t)=0$ for $t \geq 0$, we can transform this system into the neutral system (1.1) [3].

2. Existence of mild solutions

Consider the integrodifferential abstract Cauchy problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=A x(t)+\int_{0}^{t} B(t-s) x(s) d s, t \geq 0 \tag{2.1}\\
x(0)=x_{0} \in X
\end{array}\right.
$$

where $A, B(t), t \geq 0$, are closed linear operators defined on a common domain D which is dense in X. Assume that (2.1) has an associated resolvent operator $\{R(t)\}_{t \geq 0}$ on X.

Definition 2.1. A family of bounded linear operators $\{R(t)\}_{t \geq 0}$ is a resolvent operator for (2.1) if
(i) $R(0)=I$ (the identity operator) and $R(\cdot) x \in C\left(\mathbb{R}^{+}, X\right)$ for every $x \in$ $D(A)$.
(ii) For $x \in D(A), A R(\cdot) x \in C\left(\mathbb{R}^{+}, X\right)$ and $R(\cdot) x \in C^{1}\left(\mathbb{R}^{+}, X\right)$.
(iii) For all $x \in D(A)$ and every $t \geq 0$,

$$
\begin{aligned}
R^{\prime}(t) & =A R(t) x+\int_{0}^{t} B(t-s) R(s) x d s \\
& =R(t) A x+\int_{0}^{t} R(t-s) B(s) x d s
\end{aligned}
$$

For the axiomatic definition of the abstract phase space \mathcal{B} by Hale and Kato, see [5].

Definition 2.2. A map f from a subset A of a Banach space into X is said to be compact or completely continuous if $f(B)$ is relatively compact for all bounded subsets $B \subseteq A$.

To ensure that an appropriate convolution operator between spaces of continuous functions is completely continuous, the following assumptions are needed:

Let $\left(X_{i},\|\cdot\|_{i}\right), i=1,2$, be Banach spaces. Let $L: I \times X_{1} \rightarrow X_{2}$, where $I=[0, a], a \in \mathbb{R}$.
(H1) The function $L(t, \cdot): X_{1} \rightarrow X_{2}$ is continuous for almost all $t \in I$ and the function $L(\cdot, x): I \rightarrow X_{2}$ is strongly measurable for each $x \in X_{2}$.
(H2) There exist an integrable function $m_{L}: I \rightarrow \mathbb{R}^{+}$and a continuous nondecreasing function $\Omega_{L}: \mathbb{R}^{+} \rightarrow(0, \infty)$ such that

$$
\|L(t, x)\|_{2} \leq m_{L}(t) \Omega_{L}\left(\|x\|_{1}\right),(t, x) \in I \times X_{1} .
$$

Lemma 2.3. [4, Lemma 3.1] Let $\left(X_{i},\|\cdot\|_{i}\right), i=1,2,3$, be Banach spaces, $R: I \rightarrow \mathcal{L}\left(X_{2}, X_{3}\right)$, a strongly continuous map and $L: I \times X_{1} \rightarrow X_{2}$, a function satisfying conditions (H1) and (H2). Then, the map $\Gamma: C\left(I, X_{1}\right) \rightarrow C\left(I, X_{3}\right)$ defined by

$$
\Gamma u(t)=\int_{0}^{t} R(t-s) L(s, u(s)) d s
$$

is continuous. Furthermore, if one of the following conditions holds,
(a) for every $r>0$, the set $\left\{L(s, x): s \in I,\|x\|_{1} \leq r\right\}$ is relatively compact in X_{2};
(b) the map R is continuous in the operator norm and for every $r>0$ and $t \in I$, the set $\left\{R(t) L(s, x): s \in I,\|x\|_{1} \leq r\right\}$ is relatively compact in X_{3};
then Γ is completely continuous.
The following is the well-known Leray-Schauder alternative theorem [3].
Lemma 2.4. Let C be a closed convex subset of a Banach space X and assume that $0 \in C$. Let $G: C \rightarrow C$ be a completely continuous map. Then, G has a fixed point in C or the set $\{z \in C: z=\lambda G(z), 0<\lambda<1\}$ is unbounded.

To obtain another fixed point theorem, we need the following concepts [1].
Definition 2.5. Let \mathcal{D} be the set of all bounded subsets of a Banach space X. The Kuratowski measure of noncompactness is the map $\alpha: \mathcal{D} \rightarrow \mathbb{R}^{+}$defined by (here $A \in \mathcal{D}$)

$$
\alpha(A)=\inf \left\{\varepsilon>0: A \subset \bigcup_{i=1}^{n} A_{i} \text { and } \operatorname{diam}\left(A_{i}\right) \leq \varepsilon, i=1,2, \cdots, n\right\} .
$$

Definition 2.6. A map $f: A \subseteq X \rightarrow X$ is said to be condensing if $\alpha(f(B))<\alpha(B)$ for all bounded sets $B \subseteq X$ with $\alpha(B) \neq 0$.

Lemma 2.7 (Sadovskii's fixed point theorem). Let C be a closed, convex subset of a Banach space X. Suppose that $f: C \rightarrow C$ is a continuous, condensing map. Then f has a fixed point in C.

Lemma 2.8. [2] If $P=P_{1}+P_{2}$ with P_{1} a contractive operator and P_{2} a compact operator, then P is a condensing operator.

Also, we need the mean value theorem for the Bochner integral.

Lemma 2.9. [6, Lemma 2.1.3] Suppose that f is an integrable function from I into X. Then

$$
\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} f(\tau) d \tau \in \overline{c o(\{f(\tau): \tau \in[\alpha, \beta]\})}
$$

for all $\alpha, \beta \in I$ with $\alpha<\beta$, where $\operatorname{co}(\cdot)$ denotes the convex hull.
Lemma 2.10. [6, Lemma 2.2.1] Suppose that $f: I \rightarrow X$ is continuous. Suppose also that $\alpha, \beta \in I, \alpha<\beta$, and there is an at least countable subset Λ of $[\alpha, \beta]$ such that $f_{+}^{\prime}(t)$ exists for all $t \in[\alpha, \beta]-\Lambda$. Then

$$
f(\beta)-f(\alpha) \in(\beta-\alpha) \overline{\operatorname{co}\left(\left\{f_{+}^{\prime}(t): t \in[\alpha, \beta]-\Lambda\right\}\right)} .
$$

Now, we consider the partial neutral integrodifferential equation (1.1).
Definition 2.11. A function $u:(-\infty, b] \rightarrow X, 0<b \leq a$, is a mild solution of (1.1) on $[0, b]$ if
(i) $u \in C([0, b], X)$.
(ii) $u_{0}=\varphi$.
(iii) $u(t)=R(t)[\varphi(0)+f(0, \varphi)]-f\left(t, u_{t}\right)+\int_{0}^{t} R(t-s) g\left(s, u_{s}\right) d s, t \in[0, b]$.

To obtain the existence result the following conditions are needed [3].
(H3) $g:[0, a] \times \mathcal{B} \rightarrow X$ satisfies the Carathéodory condition, and there exist a continuous function $m_{g}:[0, a] \rightarrow \mathbb{R}^{+}$and a continuous nondecreasing function $\Omega_{g}: \mathbb{R}^{+} \rightarrow(0, \infty)$ such that

$$
\|g(t, \psi)\| \leq m_{g}(t) \Omega_{g}\left(\|\psi\|_{\mathcal{B}}\right),(t, \psi) \in[0, a] \times \Omega
$$

(H4) $f:[0, a] \times \mathcal{B} \rightarrow X$ is completely continuous and there exist positive constants $c_{1}, c_{2}>0$ such that

$$
\|f(t, \psi)\| \leq c_{1}\|\psi\|_{\mathcal{B}}+c_{2},(t, \psi) \in[0, a] \times \mathcal{B} .
$$

(H5) Let $0<b \leq a$ and $S(b)=\left\{x:(-\infty, b] \rightarrow X: x_{0}=0,\left.x\right|_{[0, b]} \in\right.$ $C([0, b], X)\}$ endowed with the norm of the uniform convergence topology. For every $Q \subset S(b)$ bounded, the set $\left\{t \mapsto f\left(t, x_{t}+y_{t}\right): x \in Q\right\}$ is equicontinuous on $[0, b]$.

Theorem 2.12. [3, Theorem 3.2] Assume that f, g are continuous and that there exist continuous functions $L_{f}, L_{g}:[0, a] \rightarrow \mathbb{R}^{+}$such that

$$
\begin{align*}
\left\|f\left(t, \psi_{1}\right)-f\left(t, \psi_{2}\right)\right\| & \leq L_{f}(r)\left\|\psi_{1}-\psi_{2}\right\|_{\mathcal{B}} \tag{2.2}\\
\left\|g\left(t, \psi_{1}\right)-g\left(t, \psi_{2}\right)\right\| & \leq L_{g}(r)\left\|\psi_{1}-\psi_{2}\right\|_{\mathcal{B}} \tag{2.3}
\end{align*}
$$

for every $\left(t, \psi_{i}\right) \in[0, a] \times B_{r}(0, \mathcal{B}), i=1,2$, where $B_{r}(0, \mathcal{B})$ denotes the open ball in \mathcal{B}. If $K(0) L_{f}(0)<1$, then there exists a unique mild solution of (1.1) on $[0, b]$, for some $0<b \leq a$. Here $K(t)$ satisfies the axiom

$$
\left\|x_{t}\right\|_{\mathcal{B}} \leq K(t-\sigma) \sup _{\sigma \leq s \leq t}\|x(s)\|+M(t-\sigma)\left\|x_{\sigma}\right\|_{\mathcal{B}} .
$$

Also, the second existence result in [3] is the following. This result can be obtained by using a fixed point criterion for condensing operators. We prove it in detail.

Theorem 2.13. Let conditions (H1), (H2), (H3) and (H5) be satisfied and assume that f verifies the conditions in Theorem 2.12. Suppose, in addition, $K_{b} L_{f}<1$ and that the following condition holds.
(a) There exists a constant $0<r_{\varphi}$ such that for each $t \in[0, a]$ there exists a compact set $W_{t} \subseteq X$ such that

$$
R(t) g(s, \psi) \in W_{t}, \psi \in B_{r(\varphi)}(\varphi, \mathcal{B}), s \in[0, a] .
$$

Then there exists a mild solution of (1.1) on $[0, b]$, for some $0<b \leq a$.
Proof. Let r, C_{f}, C_{g} be constants such that

$$
\begin{equation*}
\|f(t, \psi)\| \leq C_{f},\|g(t, \psi)\| \leq C_{g} \tag{2.4}
\end{equation*}
$$

for every $(t, \psi) \in[0, b] \times B_{r}(\varphi, \mathcal{B})$. We choose $\rho>0$ such that

$$
\begin{align*}
\mu & =L_{f} K_{b}<1 \tag{2.5}\\
\|R(t)\| & \leq M, 0 \leq t \leq b \tag{2.6}\\
\|[R(t)-I] f(0, \varphi)\|_{b} & +\left\|f\left(t, y_{t}\right)-f(0, \varphi)\right\|_{b} \leq \frac{(1-\mu) \rho}{3}, \tag{2.7}\\
M b C_{g} & \leq \frac{(1-\mu) \rho}{3}, \tag{2.8}\\
K_{b} \rho & +\sup _{0 \leq t \leq b}\left\|y_{t}-\varphi\right\|_{\mathcal{B}}<r \tag{2.9}
\end{align*}
$$

where $K_{b}=\sup _{0 \leq s \leq b} K(s)$ and y_{t} is defined below.
Now, we define the operator $\Gamma: S(b) \rightarrow S(b)$ by

$$
\Gamma x(t)=R(t) f(0, \varphi)-f\left(t, x_{t}+y_{t}\right)+\int_{0}^{t} R(t-s) g\left(s, x_{s}+y_{s}\right) d s
$$

where $y:(-\infty, a] \rightarrow X$ is defined by

$$
y(\theta)= \begin{cases}R(t) \varphi(0) & \text { if } 0 \leq t \leq a \\ \varphi(\theta) & \text { if } \theta \leq 0\end{cases}
$$

We claim that $\Gamma\left(B_{\rho}(0, S(b))\right) \subseteq B_{\rho}(0, S(b))$. Let $x \in B_{\rho}(0, S(b))$. Then $x_{t}+$ $y_{t} \in B_{r}(\varphi, \mathcal{B})$ for $0 \leq t \leq b$ since

$$
\begin{aligned}
\left\|x_{t}+y_{t}-\varphi\right\|_{\mathcal{B}} & \leq\left\|x_{t}\right\|_{\mathcal{B}}+\left\|y_{t}-\varphi\right\|_{\mathcal{B}} \\
& \leq K_{b} \rho+\sup _{0 \leq t \leq b}\left\|y_{t}-\varphi\right\|_{\mathcal{B}} \\
& <r
\end{aligned}
$$

by (2.9). Furthermore, we have

$$
\begin{aligned}
\|\Gamma x(t)\| \leq & \|R(t) f(0, \varphi)-f(0, \varphi)\|+\left\|f\left(t, y_{t}\right)-f(0, \varphi)\right\| \\
& +\left\|f\left(t, x_{t}+y_{t}\right)-f\left(t, y_{t}\right)\right\| \\
& +\left\|\int_{0}^{t} R(t-s) g\left(s, x_{s}+y_{s}\right) d s\right\| \\
\leq & \frac{(1-\mu) \rho}{3}+L_{f}\left\|x_{t}\right\|_{\mathcal{B}}+M b C_{g}
\end{aligned}
$$

by $(2.7),(2.8)$ and (2.4). Thus, by (2.8), we obtain

$$
\|\Gamma x(t)\| \leq(1-\mu) \rho+L_{f} K_{b}\|x\|_{b} .
$$

It follows from (2.5) that

$$
\begin{aligned}
\|\Gamma x(t)\| & <(1-\mu) \rho+\mu \rho \\
& =\rho, 0 \leq t \leq b
\end{aligned}
$$

Now, we consider the decomposition $\Gamma=\Gamma_{1}+\Gamma_{2}$:

$$
\begin{aligned}
\Gamma_{1} x(t) & =R(t) f(0, \varphi)-f\left(t, x_{t}+y_{t}\right), 0 \leq t \leq b \\
\Gamma_{2} x(t) & =\int_{0}^{t} R(t-s) g\left(s, x_{s}+y_{s}\right) d s, 0 \leq t \leq b
\end{aligned}
$$

Firstly, we show that Γ_{1} is a contraction on $B_{\rho}(0, S(b))$. Let $x, z \in B_{\rho}(0, S(b))$. Then

$$
\begin{aligned}
\left\|\Gamma_{1} x(t)-\Gamma_{1} z(t)\right\| & =\left\|f\left(t, x_{t}+y_{t}\right)-f\left(t, z_{t}+y_{t}\right)\right\| \\
& \leq L_{f}\left\|x_{t}-z_{t}\right\|_{\mathcal{B}} \\
& \leq L_{f} K_{b}\|x-z\|_{b} \\
& <\|x-z\|_{b} .
\end{aligned}
$$

Next, we prove that Γ_{2} is a compact operator. Suppose that the set $\{g(s, u)$: $0 \leq s \leq b,\|u\| \leq r\}$ is relatively compact in X. Note that the set

$$
C=\left\{R(s) g(\theta, z): s, \theta \in[0, b], z \in B_{r}(\varphi, S(b))\right\}
$$

is relatively compact in X since $R(\cdot)$ is strongly continuous and g satisfies the Carathéodory condition by (H3). In view of Lemma 2.9, we have, for any $u \in B_{r}(\varphi, S(b))$,

$$
\Gamma_{2} u(t) \in t \overline{\operatorname{co}(C)} .
$$

Thus the set $\left\{\Gamma_{2} u(t): u \in B_{r}(0, S(b))\right\}$ is relatively compact in X. To show that Γ_{2} is compact we show that the set $\left\{\Gamma_{2} u: u \in B_{r}(\varphi, S(b))\right\}$ is equicontinuous on $[0, b]$. Note that $R(\cdot)$ is strongly continuous and $g\left([0, a] \times B_{r}(\varphi, S(b))\right)$ is compact. Then for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left\|R(t) g(s, z)-R\left(t^{\prime}\right) g(s, z)\right\| \leq \varepsilon, t, t^{\prime}, s \in[0, b], z \in B_{r}(\varphi, S(b))
$$

when $\left|t-t^{\prime}\right| \leq \delta$. Let $u \in B_{r}(\varphi, S(b)), t \in[0, b],|h| \leq \delta$, and $t+h \in[0, b]$. Then

$$
\begin{aligned}
\left\|\Gamma_{2} u(t+h)-\Gamma_{2} u(t)\right\| \leq & \int_{0}^{t}\|[R(t+h-s)-R(t-s)] g(s, u(s))\| d s \\
& +\sup _{0 \leq \tau \leq b}\|R(\tau)\| \int_{t}^{t+h}\|g(s, u(s))\| d s \\
\leq & \varepsilon b+\sup _{0 \leq \tau \leq b}\|R(\tau)\| \Omega \Omega_{g}(r) \int_{t}^{t+h} m_{g}(s) d s
\end{aligned}
$$

by (H3). Therefore $\left\{\Gamma_{2} u: u \in B_{r}(\varphi, S(b))\right\}$ is equicontinuous on $[0, b]$. Hence, the Ascoli-Arzela theorem guarantees that Γ_{2} is a compact operator. Consequently, $\Gamma=\Gamma_{1}+\Gamma_{2}$ is a condensing operator on $B_{\rho}(0, S(b))$. By the fixed point theorem for condensing operator (Lemma 2.8), Γ has a fixed point $x(\cdot)$ of (1.1) on $[0, b]$. Then $u=y+x$ is a mild solution of (1.1) on $[0, b]$. This completes the proof.

References

[1] R. P. Agarwal, M. Meehan, and D. ÓRegan, Fixed Point Theory and Applications, Cambridge Univ. Press, 2001.
[2] X. Fu and R. Huang, Existence of solutions for neutral integro-differential equations with state-dependent delay, Appl. Math. Comput. 224 (2013), 743759.
[3] E. Hernández and J. P. C. Dos Santos, Existence results for partial neutral integrodifferential equation with unbounded delay, Applicable Analysis 86 (2007), 223-237.
[4] E. Hernández and M. McKibben, Some comments on: "Existence of solutions of abstract nonlinear second-order neutral functional integrodifferential equations", Comput.Math. Appl. 50 (2005), 655-669.
[5] Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Math., 1473, Springer-Verlag, Berlin, 1991.
[6] R. H. Martin, Nonlinear Operators and Differential Equations in Banch Spaces, John Wiley \& Sons, New York, 1976.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: sgchoi@cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: ibbnsaram@nate.com

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: njkoo@cnu.ac.kr

[^0]: Received April 02, 2015; Accepted April 24, 2015.
 2010 Mathematics Subject Classification: Primary 47D09, 47N20, 34G10.
 Key words and phrases: neutral equation, integrodifferential equation, mild solution, Sadovskii's fixed point theorem.

 Correspondence should be addressed to Namjip Koo, njkoo@cnu.ac.kr.
 This study was financially supported by research fund of CNU in 2014.

