• Title/Summary/Keyword: unbalance supply voltage

Search Result 39, Processing Time 0.026 seconds

Scott Transformer Modeling using PSIM on the AC Substation in the Elect ric Railroad (전기철도의 교류 급전변전소에서 PSIM을 이용한 스코트변압기 모델링)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1892-1897
    • /
    • 2010
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. PSIM(Power Electronics Simulator) is optimal simulation software in field of the power electronics and provide the simple and convenient user interface. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using PSIM.

  • PDF

Islanding detection method for distributed generations using the change of the voltage unbalance and the output power of DG (전압 불평형과 발전기 출력 변동을 이용한 분산전원의 단독운전 판단 기법)

  • Kang, Yong-Cheol;Jang, Sung-Il;Lee, Ji-Hoon;Cha, Sun-Hee;Kim, Yeon-Hee;Lee, Byung-Eun;Kim, Yong-Guen
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.240-241
    • /
    • 2006
  • Islanding operations of DG usually occur when power supply from the main utility is interrupted due to several reasons but the DG keeps supplying power into the distribution networks. These kinds of islanding conditions cause negative impacts on protection, operation, and management of distribution systems. Therefore, it is necessary to effectively detect the islanding conditions and swiftly disconnect DG from distribution network. This paper proposes the islanding detection algorithm for DG using the change of the voltage unbalance and the output power of DG. The proposed method effectively combines the conventional parameters for detecting the islanding conditions. The proposed methods were verified using the radial distribution network of IEEE 34 bus.

  • PDF

Power Quality Compensating System Using Series Active Power Filter

  • Kwon Hyoung-Nam;Gho Jae-Sok;Choe Gyu-Ha;Kim Hong-Sung;Han Suk-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.606-610
    • /
    • 2001
  • Voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many systems. Moreover momentary interruptions and voltage sags are responsible for many of the power quality problems found in typical industrial plants. In this paper, proposed power system using series active power filter is not only harmonic compensation but also harmonic isolation between supply and load, and voltage regulation and unbalance compensation. The effectiveness of the proposed system is verified through computer simulations and experiments

  • PDF

Manufacture and operation of test facilities for energy regenerating system (회생제동 인버터 시험설비의 제작 및 시험)

  • Yang, Young-Chul;Park, Jong-Phil;Han, Moon-Sub;Kim, Ju-Rak;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.852-857
    • /
    • 2007
  • For electric traction using a large power converter, harmonic problem in the p-ower quality and regenerating energy in side of efficiency are important. Recently, by advance in power electronics technology, some countries are considering regenerative inverter from the points of view. when the electric tractions are stopped or driven through the falling slope way, it is very useful to supply surplus energy to the power source by regenerating system in the efficient side of energy and it is very economical. these regenerating energy are supported electrical equipment through DC line. In this research, the purposes are suppressing extra DC-line voltage and saving energy generated while electric traction is been driving on the falling slope way or reducing speed for railway using a 1500V DC-voltage. Besides, the accompanied defects of current distortion, low power factor and the voltage unbalance will be solved by developing the algorism of inverter having ability to compensate current harmonic.

  • PDF

Power Quality Compensate System Using Photovoltaic System (태양광발전 시스템을 이용한 전력품질 보상시스템)

  • Han S.W.;Choe G.H.;Jang D.H.;Shin W.S.;Kim H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.76-80
    • /
    • 2001
  • Voltage harmonics resulting from current harmonies produced by the nonlinear loads have become a serious problems in many systems. Moreover momentary interruptions and voltage sags are responsible for many of the power quality problems found in typical industrial plants. In this paper, proposed power quality compensate system using photovoltaic system is not only for harmonic compensation but also for harmonic isolation between supply and load, and for voltage regulation and unbalance compensation. Through computer simulations, we have verified the effectiveness of the proposed system.

  • PDF

Analysis of winding currents for three phase induction motor connected to single phase supply (단상 전원에 접속된 3상 유도전동기의 권선전류 분석)

  • Kim, Do-Jin;Kang, Sang-Soo;Kang, Nam-Ho;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.824-825
    • /
    • 2008
  • This paper analyzes the stator winding currents of a three phase induction motor which is connected to the single phase supply. Two stator configurations, Steinmetz connection and modified Steinmetz connection, are respectively employed. In each case, the phase converter reactance at starting is determined using the condition of minimum voltage unbalance factor. By using this reactance, the stator winding currents of each connection are computed and compared with the results of three phase balanced operation.

  • PDF

Power Quality Optimal Control of Railway Static Power Conditioners Based on Electric Railway Power Supply Systems

  • Jiang, Youhua;Wang, Wenji;Jiang, Xiangwei;Zhao, Le;Cao, Yilong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • Aiming at the negative sequence and harmonic problems in the operation of railway static power conditioners, an optimization compensation strategy for negative sequence and harmonics is studied in this paper. First, the hybrid RPC topology and compensation principle are analyzed to obtain different compensation zone states and current capacities. Second, in order to optimize the RPC capacity configuration, the minimum RPC compensation capacity is calculated according to constraint conditions, and the optimal compensation coefficient and compensation angle are obtained. In addition, the voltage unbalance ${\varepsilon}_U$ and power factor requirements are satisfied. A PSO (Particle Swarm Optimization) algorithm is used to calculate the three indexes for minimum compensating energy. The proposed method can precisely calculate the optimal compensation capacity in real time. Finally, MATLAB simulations and an experimental platform verify the effectiveness and economics of the proposed algorithm.

An Output Voltage Balance Control of Grid Connected Inverter by Phase Current Control at Critical Load Unbalanced Condition (계통연계 인버터의 주요 부하 불평형 시 상전류 제어를 통한 부하 상전압 평형 제어)

  • Tae-Hyeon Park;Hag-Wone Kim;Kwan-Yuhl Cho;Joon-Ki Min;Won-Il Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2023
  • A grid-connected inverter can be used in grid-connected or stand-alone modes. Generally, a grid-connected inverter operates in a grid-connected mode, but the inverter operates in stand-alone mode if grid faults occur. In the stand-alone mode, the grid-connected inverter must supply electric power to a critical load that needs to receive stable power even though grid faults occur. Generally, three-phase loads are used as critical loads, but a single phase is configured in some cases. In these conditions, the critical load is required to unbalance the load power consumption, which makes the three-phase load voltage unbalancd. This unbalanced voltage problem can cause fatal problems to the three-phase critical loads, and thus must be addressed. Hence, this paper proposes an algorithm to solve this unbalanced voltage problem by the individual phase current control. The proposed method is verified using Psim simulation and experiments.

Enhanced Phase Angle Detect Method Using High-pass Filter (고주파 필터를 이용한 개선된 위상각 검출 방법)

  • Heo, Min-Ho;Song, Sung-Gun;Kim, Gwang-Heon;Nam, Hae-Gon;Park, Sung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2370-2378
    • /
    • 2009
  • The enhanced phase angle estimation algorithm is essential to supply the power stably under synchronizing with grid source. In this paper, we are proposed the novel phase angle estimation algorithm and verified the validity of proposed method as simulation with PSIM and experiments. We sort the harmonics element using high-pass filter(HPF) that have the cut-off frequency below basic element and make reverse d-q transformation. So, it can be restored the harmonics element at stationary axis, and we can get the fundamental voltage element of AC grid. Proposed PLL method have a rapid responsibility and a large margin at controller design than conventional method because it have a small phase delay and a sufficient controller gain margin. And, it can reduce the error of voltage rms value and axis transformation according to robust PLL algorithm against the harmonic and phase unbalance.

Advanced Synchronous Reference Frame Controller for three-Phase UPS Powering Unbalanced and Nonlinear Loads (3상 무정전 전원장치에 적합한 새로운 구조의 동기좌표계 전압제어기)

  • Hyun Dong-Seok;Kim Kyung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • This paper describes a high performance voltage controller for 3-phase 4-wire UPS (Uninterruptible Power Supply) system, and proposes a new scheme of synchronous reference frame controller in order to compensate for the voltage distortions due to unbalanced and nonlinear loads. Proposed scheme can eliminate the negative sequence voltage component due to unbalanced loads and also reduce the harmonic voltage component due to non-linear loads, even when the bandwidth of voltage control loop is a very low. In order to compensate for the effects of unbalanced loads, the synchronous reference frame controller with the positive and negative sequence computation block is proposed, and the synchronous frame controller with a bandpass filter is proposed to compensate for the selected harmonic frequency of output voltage. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experiments by a 30kVA UPS.