• Title/Summary/Keyword: ultraviolet ray

Search Result 325, Processing Time 0.028 seconds

Gas Sensing Properties of Au-decorated NiO Nanofibers (Au 촉매금속이 첨가된 NiO 나노섬유의 가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.296-300
    • /
    • 2017
  • NiO nanofibers with Au nanoparticles were synthesized by sol-gel and electrospinning techniques, in which the reduction process by ultraviolet exposure is included for the growth of Au nanoparticles in the electrospinning solution. FE-SEM(Field Emission Scanning Electron Microscopy), TEM(Transmission Electron Microscopy) revealed that the synthesized nanofibers had the diameter of approximately 200 nm. X-ray diffraction showed the successful formation of Au-decorated NiO nanofibers. Gas sensing tests of Au-decorated NiO nanofibers were performed using reducing gases of CO, and $C_6H_6$, $C_7H_8$, $C_2H_5OH$. Compared to as-synthesized NiO nanofibers, the response of Au-loaded NiO nanofibers to CO gas was found to be about 3.4 times increased. On the other hand, the response increases were only 1.1-1.3 times for $C_6H_6$, $C_7H_8$, and $C_2H_5OH$.

Structure and Photoluminescence Properties of SnO2/Zn Core-shell Nanowires

  • Kim, Hyoun Woo;Na, Han Gil;Kwon, Yong Jung;Cho, Hong Yeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.241-241
    • /
    • 2014
  • $SnO_2-core/Zn-shell$ heteronanowires were fabricated by a two-step process: thermal evaporation of Sn powders and employing a sputtering technique with a Zn target. X-ray diffraction, high-resolution transmission electron microscopy, and EDX spectra coincidentally indicated that the shell layer comprised the Zn phase. From Gaussian deconvolution studies, we observed that photoluminescence (PL) spectra consisted of yellow, green, and ultraviolet (UV) emission bands, regardless of shell-coating. We speculated the possible mechanisms of these emission peaks.

  • PDF

Structural and Opical Properties of ZnO Thin Films with Different Temperature of Sol-gel Solution (Sol-gel 용액의 온도변화에 따른 ZnO 박막의 구조적, 광학적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.137-138
    • /
    • 2012
  • ZnO 박막을 Sol-gel용액을 이용한 스핀코팅 방법으로 석영기판 위에 성장하였고 Sol-gel 용액의 온도 변화에 따른 구조적, 광학적 특성을 분석하였다. ZnO 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. PL 분석에서 ZnO 박막은 orange 계열의 발광을 하였으며, PL spectra는 3.3 eV 부근의 near-band edge emission (NBE) 피크와 2.0 eV 부근의 deep-level emission (DLE) 피크로 이루어져있다. 모든 sol-gel 용액 온도에서, DLE 피크가 NBE 피크보다 더 우세하고 이 DLE 피크는 sol-gel 용액의 온도가 증가함에 따라 점점 증가하다가 감소하는 것을 알 수 있다. 이런 DLE 피크는 산소 공공, 아연 공공, 침입형 산소, 침입형 아연 등과 같은 결함에 의한 것이며, ZnO 박막은 sol-gel 용액의 온도에 따라 결함의 특성이 변화하였다.

  • PDF

Global Far-UV Emission-line Images of the Vela Supernova Remnant

  • Kim, Il-Joong;Seon, Kwang-Il;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.110.2-110.2
    • /
    • 2011
  • Nishikida et al. (2006) presented the first far-ultraviolet (FUV) em${\lambda}$ission-line images of the Vela supernova remnant (SNR) obtained with FIMS/SPEAR instrument. Those include C III ${\lambda}$977, O VI ${\lambda}{\lambda}$1032, 1038, Si IV+O IV] ${\lambda}{\lambda}$1393, 1403 (un-resolved), C IV ${\lambda}{\lambda}$1548, 1551 emission-line images. As a following work, we re-constructed these emission-line images using the new-version processed FIMS/SPEAR data. Additionally, we made N IV] ${\lambda}$1486, He II ${\lambda}$1640.5, O III] ${\lambda}{\lambda}$1661, 1666 emission-line images. The new-version images cover the whole region of the Vela SNR and show more resolved features than the old-version. We compare these FUV emission-line images with other wavelength (X-ray, optical, etc.) images obtained in previous studies.

  • PDF

Characteristics Investigation of ZnO-Si-ZnO Multi-layer Thin Films Fabricated by Pulsed Laser Deposition (펄스 레이저 증착법에 의해 제작된 ZnO-Si-ZnO 다층 박막의 특성 연구)

  • 강홍성;강정석;심은섭;방성식;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.65-69
    • /
    • 2003
  • ZnO-Si-ZnO multi-layer thin films have been deposited by pulsed laser deposition (PLD). And then, the films have been annealed at 300$^{\circ}C$ in oxygen ambient pressure. Peak positions of ultraviolet (UV) and visible region were changed by addition of Si layer. Mobility of the films was improved slightly than ZnO thin film without Si layer. The structural property changed by inserting intermediate Si layer in ZnO thin film. The optical properties and structural properties of ZnO-Si-ZnO multi-layer thin films were characterized by PL(Photoluminescence) and XRB(X-ray diffraction) method, respectively. Electrical properties were measured by van der Pauw Hall measurements

Development of Aspheric Microlens Array to Improve the Properties of Multi Optical Probes (다중 광 프로브 특성 향상을 위한 비구면 마이크로렌즈 어레이의 개발)

  • Min, J.;Kim, H.;Choi, M.;Kim, B.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.104-107
    • /
    • 2007
  • An aspheric microlens array to improve the properties of multi optical probes was designed and fabricated. To generate multi optical probes with good qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. Using the reflow process, a master pattern of aspheric microlens array was made and finally with the ultraviolet-imprinting (UV-imprinting) method, the aspheric microlens array was replicated. The reflow condition was optimized to realize the master pattern of the microlens array with the designed aspheric shape. The intensity distribution of the optical probes at the focal plane showed a diffraction-limited shape.

  • PDF

Intense Pulsed Light object processing in compliance with a data forming method (데이타 포밍방식에 의한 Intense Pulsed Light의 객체처리)

  • Kim, Whi Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • It establishes the nonlinear optics material recently on solid-state laser output side and from the infrared ray until is early has in the ultraviolet rays and the wavelength of broadband there makes be a possibility of getting the laser light which and in processing and measuring field it is widely used. Consequently, it used the pulse reiteration law from origination and nine as the fundamental wave direct plan it produced. intense it affixed the nonlinear optics material (KTP) in pulsed light and it got the green light. When inflicting a same energy in respectively reiteration mesh, intense interrelation of pulse light output and green light output between. It analyzed the conversion ratio which it follows in the mesh.

Facile Hydrothermal Synthesis and Characterization of the $CeO_2$ Nanorings

  • Arul, N. Sabari;Kim, Tae Whan;Mangalaraj, Devanesan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.455-455
    • /
    • 2013
  • $CeO_2$ nanorings were synthesized by using a surfactant free hydrothermal method. The surface morphology, structural and optical properties of the synthesized $CeO_2$ was investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV) spectroscopy measurements. SEM images showed that the surface morphology of the formed $CeO_2$ appeared as nanorings. The XRD pattern of $CeO_2$ nanorings showed the presence of the polycrystalline $CeO_2$ phase readily indexed to the cubic fluorite structure of the $CeO_2$. The mean crystallite size of the $CeO_2$ was calculated using the Scherrer equation from the XRD line broadening of the (111) planes of the cubic $CeO_2$. The UV-Visible spectroscopy spectrum of the $CeO_2$ nanorings exhibited a strong UV absorption band around 350 nm.

  • PDF

Effect of Ar ion Sputtering on the Surface Electronic Structure of Indium Tin Oxide

  • Lee, Hyunbok;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.128-132
    • /
    • 2016
  • We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.