Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.4.296

Gas Sensing Properties of Au-decorated NiO Nanofibers  

Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.4, 2017 , pp. 296-300 More about this Journal
Abstract
NiO nanofibers with Au nanoparticles were synthesized by sol-gel and electrospinning techniques, in which the reduction process by ultraviolet exposure is included for the growth of Au nanoparticles in the electrospinning solution. FE-SEM(Field Emission Scanning Electron Microscopy), TEM(Transmission Electron Microscopy) revealed that the synthesized nanofibers had the diameter of approximately 200 nm. X-ray diffraction showed the successful formation of Au-decorated NiO nanofibers. Gas sensing tests of Au-decorated NiO nanofibers were performed using reducing gases of CO, and $C_6H_6$, $C_7H_8$, $C_2H_5OH$. Compared to as-synthesized NiO nanofibers, the response of Au-loaded NiO nanofibers to CO gas was found to be about 3.4 times increased. On the other hand, the response increases were only 1.1-1.3 times for $C_6H_6$, $C_7H_8$, and $C_2H_5OH$.
Keywords
NiO nanofibers; Au nanoparticles; Gas sensor; Carbon monoxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Durante, F .K. J., R. A. Johnson, Role of Carbon Monoxide in Cardiovascular Function. J. Cell. Mol. Med., 10 (2006) 672-686.   DOI
2 P. Montuschi, S. A. Kharitonov, P. J. Barnes, Exhaled Carbon Monoxide and Nitric Oxide in COPD. CHEST Journal 120 (2001) 496-501.   DOI
3 M.-R. Yu, R.-J. Wu, M. Chavali, Effect of 'Pt' Loading in ZnO-CuO Hetero-Junction Material Sensing Carbon Monoxide at Room Temperature. Sens. Actuators, B: Chem. 153 (2011) 321-328.   DOI
4 H. Steinebach, S. Kannan, L. Rieth, F. Solzbacher, $H_2$ Gas Sensor Performance of NiO at High Temperatures in Gas Mixtures. Sens. Actuators, B: Chem. 151 (2010) 162-168.   DOI
5 S. Vetter, S. Haffer, T. Wagner, M. Tiemann, Nanostructured $Co_3O_4$ as a CO Gas Sensor: Temperature-Dependent Behavior. Sens. Actuators, B: Chem. 206 (2015) 133-138.   DOI
6 Chen Wang, Jiangyang Liu, Qiuyue Yang, Peng Sung, Yuan Gao, Fengmin Liu, Jie Zheng, Geyu Lu, Ultrasensitive and Low Detection Limit of Acetone Gas Sensor Based on W-Doped NiO Hierarchical Nanostructure, Sens. Actuators B, 220 (2015) 59-67.   DOI
7 Chengjun Dong, Xuechun Xiao, Gang Chen, Hongtao Guan, Yude Wang, Igor Djerdj, Porous NiO Nanosheets Self-Grown on Alumina Tube Using a Novel Flash Synthesis and Their Gas Sensing Properties, RSC Adv. 5 (2015) 4880-4885.   DOI
8 L. H. Qian, K. Wang, Y. Li, H. T. Fang, Q. H. Lu, X. L. Ma, CO Sensor Based on Au-Decorated $SnO_2$ Nanobelt. Mater. Chem. Phys. 100 (2006) 82-84.   DOI
9 S. Sethi, R. Nanda, T. Chakraborty, Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases. Clin. Microbiol. Rev. 26 (2013) 462-475 .   DOI
10 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li, C. Wang, Assembly of Pt Nanoparticles on Electrospun $In_2O_3$ Nanofibers for $H_2S$ Detection, J. Colloid Interface Sci. 338 (2009) 366-370.   DOI
11 L. E. Otterbein, Carbon Monoxide: Innovative Anti-Inflammatory Properties of an Age-Old Gas Molecule. Antioxid. Redox Signal. 4 (2002) 309-319.   DOI
12 C. M. HcHale, L. Zhang, M. T. Smith, Current Understanding of the Mechanism of Benzene-Induced Leukemia in Humans: Implications for Risk Assessment. Carcinogenesis 33 (2012) 240-252.   DOI
13 G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Diagnosing Lung Cancer in Exhaled Breath Using Gold Nanoparticles. Nat. Nanotechnol. 4 (2009) 669-673.   DOI