Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.6.128

Effect of Ar ion Sputtering on the Surface Electronic Structure of Indium Tin Oxide  

Lee, Hyunbok (Department of Physics, Kangwon National University)
Cho, Sang Wan (Department of Physics, Yonsei University)
Publication Information
Applied Science and Convergence Technology / v.25, no.6, 2016 , pp. 128-132 More about this Journal
Abstract
We investigated the effect of Ar ion sputtering on the surface electronic structure of indium tin oxide (ITO) using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) measurements with increasing Ar ion sputtering time. XPS measurements revealed that surface contamination on ITO was rapidly removed by Ar ion sputtering for 10 s. UPS measurements showed that the work function of ITO increased by 0.2 eV after Ar ion sputtering for 10 s. This increase in work function was attributed to the removal of surface contamination, which formed a positive interface dipole relative to the ITO substrate. However, further Ar ion sputtering did not change the work function of ITO although the surface stoichiometry of ITO did change. Therefore, removing the surface contamination is critical for increasing the work function of ITO, and Ar ion sputtering for a short time (about 10 s) can efficiently remove surface contamination.
Keywords
UPS; XPS; ITO; Ar ion sputtering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. H. Friend, R.W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature, 397, 121 (1999).   DOI
2 H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 83, 125 (2004).   DOI
3 H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater., 11, 605 (1999).   DOI
4 N. Koch, ChemPhysChem, 8, 1438 (2007).   DOI
5 H. Lee, S. W. Cho, and Y. Yi, Curr. Appl. Phys., 16, 1533 (2016).   DOI
6 J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R, 64, 1 (2009).   DOI
7 H. Lee, S.W. Cho, K. Han, P. E. Jeon, C.-N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett., 93, 043308 (2008).   DOI
8 H. Lee, E. Puodziukynaite, Y. Zhang, J. C. Stephenson, L. J. Richter, D. A. Fischer, D. M. DeLongchamp, T. Emrick, and A. L. Briseno, J. Am. Chem. Soc., 137, 540 (2015).   DOI
9 K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys., 87, 295 (2000).   DOI
10 S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, J. Appl. Phys., 95, 2560 (2004).   DOI
11 C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).   DOI
12 K. Jung, S. Park, Y. Lee, Y. Youn, H.-I. Shin, H.-K. Kim, H. Lee, and Y. Yi, Appl. Surf. Sci., 387, 625 (2016).   DOI
13 S. P. Harvey, T. O. Mason, Y. Gassenbauer, R. Schafranek, and A. Klein, J. Phys. D-Appl. Phys., 39, 3959 (2006).   DOI
14 C. Korber, V. Krishnakumar, A. Klein, G. Panaccione, P. Torelli, A. Walsh, J. L. F. Da Silva, S.-H. Wei, R. G. Egdell, and D. J. Payne, Phys. Rev. B, 81, 165207 (2010).   DOI
15 P. Carreras, S. Gutmann, A. Antony, J. Bertomeu, and R. Schlaf, J. Appl. Phys., 110, 037711 (2011).
16 L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stossel, and J. Simmerer, Synth. Met., 111-112, 315 (2000).   DOI