• Title/Summary/Keyword: ultrasonic vibrations

Search Result 52, Processing Time 0.03 seconds

A Study on Absorbing Boundaries for Wave Propagation in Semi-Infinite Elastic Media (반무한 영역에서의 탄성파 진행문제를 위한 흡수경계에 관한 연구)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.451-457
    • /
    • 2000
  • In many dynamic problems such as foundation vibrations ultrasonic nondestructive evaluation and blasting analysts are confronted with the problem of wave propagation in an infinite or semi-infinite media. In order to simulate this situation by a finite analytical model provisions must be made to absorb the stress waves arriving at the boundary. Absorbing boundaries are mathematical artifacts used to prevent wave reflections at the boundaries of discrete models for infinite media under dynamic loads. An analytical study is carried out to examine the effectiveness of Lysmer-Kuhlemeyer model one of the most widely used absorbing boundaries. Validity of the absorbing boundary conditions suggested by Lymer-Kuhlemeyer is examined by adopting the solution of Ewing et al. to the problem of plane waves from a harmonic normal force on the surface of an elastic half-space. The Ewing's problem is than numerically simulated using the finite element method on a semi-circular mesh with and without absorbing boundaries which are represented by viscous dashpots. The absorption ratios are calculated by comparing the displacements at the absorbing boundaries to those at the free field without absorbing boudaries.

  • PDF

FEA of Rotary Type Ultrasonic Vibrator using Longitudinal-Torsional Vibration (종-비틀림 진동모드를 이용한 회전형 초음파 진동자의 유한요소 해석)

  • Jeong, Dong-Seok;Park, Tae-Gone;Kim, Myung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.601-604
    • /
    • 2002
  • In this paper bolt-tightened Langevin type vibrator was designed using longitudinal-torsional vibration. These two vibrations make rotary displacement at the end of the vibrator. ANSYS was used to determine shape and dimension of the vibrator in addition to resonant frequency, displacement and stress distribution. This kind of vibrator can be applied for a brakeless and gearless rotary motor which has high torque at low speed.

  • PDF

Experimental Verification of the Unified Formula for Electromechanical Coupling Coefficient of Piezoelectric Resonators

  • Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol;Cao, Wen-Wu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.110-114
    • /
    • 2006
  • In a previous theoretical paper, we have derived a unified formula by considering 2-D coupled mode vibrations. The unified formula for electromechanical coupling coefficient of piezoelectric resonator was verified experimentally. The capacitance change near the resonant frequency was investigated to estimate the effective coupling coefficient of the resonator instead of the conventional method based on I-D model. The susceptance spectra were measured for the seven samples of piezoelectric resonator with different aspect ratio. Excellent agreement between theoretical and experimental results was obtained.

A Study on the Stiffness Estimation in Soft Tissue Using Speckle Brightness Variance Tracking (초음파 의료영상에서 스페클의 시간적 밝기 변화를 이용한 연조직의 stiffness를 추정하는 방법에 대한 연구)

  • 안동기;박정만;권성재;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.141-149
    • /
    • 2003
  • This paper proposes a method of measuring and imaging the stiffness of human soft tissue to diagnose cancers or tumors which have been difficult to detect in ultrasound B-mode imaging systems. To measure the soft tissue stiffness, sinusoidal vibrations are applied to it, and the magnitude of its mechanical vibration is determined by estimating the temporal variation of speckle pattern brightness in ultrasound B-mode images. It is verified by simulation and experiment that the proposed method can estimate the relative tissue stiffness from B-mode images with a relatively small amount of computation.

Experimental Study on Crack Detection of Clamped-clamped Beams (양단 고정보의 크랙 검출에 대한 실험적 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2010
  • In this paper, the purpose is to study a method for detection of crack in clamped-clamped beams using the vibration characteristics. The natural frequency of beam is obtained by FEM and experiment. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The differences between the actual and predicted crack positions and sizes are less than 9.8% and 28%, respectively.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

Study on Detection of Crack and Damage for Cantilever Beams Using Vibration Characteristics (진동특성을 이용한 외팔보의 크랙 및 손상 검출에 대한 연구)

  • Son, In-Soo;Ahn, Sung-Jin;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.935-942
    • /
    • 2009
  • In this paper, the purpose is to investigate the natural frequency of a cracked Timoshenko cantilever beams by FEM(finite element method) and experiment. In addition, a method for detection of crack in a cantilever beams is presented based on natural frequency measurements. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The detection method of a crack location in a beam based on the frequency measurements is extended here to Timoshenko beams, taking the effects of both the shear deformation and the rotational inertia into account. The differences between the actual and predicted crack positions and sizes are less than 6 % and 23 % respectively.

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

Cart Integrated Management System (카트 통합 관리 시스템)

  • Ko, DH;Kim, HK;Kim, HU;Moon, DH;Lee, IH;Kim, DI
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.407-409
    • /
    • 2017
  • Many traditional retailers are losing money due to loss and accidents in managing their carts. Therefore, we intend to solve these problems by installing a raspberry pie with various functions in order to efficiently manage the cart. First, use ultrasonic sensors to measure the distance between the cart and the object, use vibration sensors to vary the number of vibration sensors, change the number of vibrations to the user, and use Beacon to transmit the cart in real time. It also contributes to consumers' spending patterns and revenue generation by identifying consumers' consumption patterns. Problems with lost are also resolved by issuing an audible warning (outside of Mart) if a distance is removed (outside of Mart).

  • PDF