• 제목/요약/키워드: ultrasonic systems

검색결과 573건 처리시간 0.033초

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권4호
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

초음파 바이오텔레메터리를 이용한 어류의 추적기술 (Tracking Technology of Fish by an Ultrasonic Biotelemetry System)

  • 박주삼
    • 수산해양교육연구
    • /
    • 제19권3호
    • /
    • pp.478-490
    • /
    • 2007
  • A technology of ultrasonic biotelemetry for tracking fish behavior is investigated. The ultrasonic biotelemetry system is constituted by a transmitter and a receiving system. Because a pinger was mainly used for the transmitter, the capability for pinger to possess was investigated and the efficient usage for pinger was examined. A source pressure level and a frequency were synthetically examined so that pinger could realize small size, a light weight, and a long life time. The receiving system is divided roughly into directional hydrophone systems and acoustic positioning systems by the receiving method. The directional hydrophone system is divided into single beam and multiple beam with the number of hydrophone, and the acoustic positioning systems is divided into LBL (Long Base Line), SBL (Short Base Line), and SSBL (Super Short Base Line) on the basis of base line. The present situation, the merits and demerits, and the principle of each receiving method were investigated in detail, and the efficient usage for each receiving method were examined.

초음파에 의해서 가진되어지는 Flexural Beam의 동특성에 관한 연구 (A study on the dynamic characteristics of exciting Flexural beam by ultrasonic wave)

  • 정상화;신상문;김광호;이상희;김주환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.792-796
    • /
    • 2006
  • In recent years, the semiconductor industry and the optical industry is developed rapidly. The recent demand has expanded for optical components such as a optical lens, a optical semiconductor and a measuring instrument. Object transport systems are driven typically by the magnetic field and the conveyer belt. Recent industry requires more faster and efficient transport system. However, conventional transport systems are not adequate for transportation of optical elements and semiconductors. Because conveyor belts can damage precision optical elements by the contact force and magnetic systems can destroy the inner structure of semiconductor by the magnetic field. In this paper, the levitation transport system using ultrasonic wave is developed for transporting precision elements without damages. This transport system is using 2-mode ultrasonic wave excitation and flexural beam modes shapes are evaluated. It compared simulation results with experimental results

  • PDF

선박 슬러지유 환경에서의 초음파진동자 선단의 침식손상(1) -유온도의 변화에 대해서- (Erosion Damage of Ultrasonic Vibrator Tip in Marine Sludge Oil Environment -as for oil temp. change-)

  • 이진열;정지선;하만식;한원희
    • 해양환경안전학회지
    • /
    • 제7권2호
    • /
    • pp.1-11
    • /
    • 2001
  • Many investments and works being continued to preserve green ocean in each countries of the world. Especial1y, the researches on the prevention of marine oil pollution being strengthened. It is not easy to disclose sludge oils that were produced necessarily in the ships operation, so that they are transferred to shore treating facility after collected inside the ship's sludge tank mostly. However, this shore transferring method is not only costly and time consuming but also entails risk of oil pollution. In this regard, it will be the best way to manage the sludge oils inside ship itself. The purpose of this study is to device an ultrasonic breaking systems which recycle the sludge oil from ships into usable oil to be burnt. In this paper, the first place, matrix structures of sludge fuel oil(SFO) and sludge lubricating oil(SLO) with the irradiation time for ultrasonic vibrator were interpreted. And, erosion damage for vibrator horn tip which is one of important part of ultrasonic breaking systems was examined under such an environment of the sludge oils. The material for horn tip is being made of SS41 steel and its erosion phase was investigated with variation of the vibration amplitude of 50${\mu}{\textrm}{m}$ and 24${\mu}{\textrm}{m}$ as well as the change of temperature in the oil environments. It is suggested that the experimental results can be helpful to the development of sludge oil disposing systems for the vessel.

  • PDF

Development of a Ultrasonic System for Nano-Surface Reformation Process

  • Kim, Hyunse;Lim, Euisu;Park, Jong-Kweon
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.365-370
    • /
    • 2017
  • In this article, a 20 kHz Titanium (Ti) ultrasonic waveguide system for a nano-surface reformation process was designed and fabricated. First, finite element analysis using ANSYS software was performed to find the optimal dimensions. The obtained anti-resonance frequency for the Ti transducer with the piezoelectric device was 20.0 kHz, which value agreed well with the experiment result of 20.1 kHz (0.5% error). To test the system, chromium molybdenum steel (SCM) 435 was chosen as a test-piece. The result proved that the reformed depth was $36{\mu}m$. In addition, hardness was measured before and after the process. The value was changed from 14 HRC to 21 HRC, which is 50% increasing rate. Finally, the friction coefficient test result showed that the surface coefficient was reduced from 0.14 to 0.10 (28.6% reduction). Based on the results, the Ti ultrasonic equipment is regarded as a useful device for nano-scale surface reformation.

초음파센서를 이용한 지능형 자동문시스템 개발 (Development of on Intelligent Automatic Door System Using Ultrasonic Sensors)

  • 송동혁;장병건
    • 조명전기설비학회논문지
    • /
    • 제23권6호
    • /
    • pp.31-39
    • /
    • 2009
  • 본 논문은 기존의 자동문시스템의 단점을 개선하여 보다 지능적인 기능을 추가함으로써 통행자에게 편의를 제공하고, 전격손실을 낮추는 보다 효율적인 초음파센서 기반의 지능형 자동문 시스템을 제안한다. 기존의 자동문시스템에서는 물체 및 인체 감지 기능 센서로서 원적외선 열선 감지센서와 근적외선 반사식 감지센서를 사용해 왔나. 기존의 방식은 상황에 맞지 않는 문닫힘에 의한 전력손실, 빠르게 다가오는 물체에 대한 적응 부족, 그리고 안전에 대한 문제점이 있었다. 제안된 초음파센서를 이용한 지능형자동문 시스템은 기존의 자동문시스템에 비교하여 필요없는 문닫힘 방지에 의한 전력손실 방지와 빠르게 접근하는 물체에 적응적으로 자동문이 빠르게 열릴 수 있게 하며, 안전도를 높여 기존 방식의 자동문보다 운용적, 경제적, 안정 면에서 성능을 개선하였다.

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

냉각용 초음파 웨이브가이드의 진동 특성 (Vibration characteristics of an ultrasonic waveguide for cooling)

  • 김현세;임의수
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.568-575
    • /
    • 2020
  • 초음파는 다양한 산업 분야에서 널리 사용이 되고 있다. 그 중에 도전적인 분야로 전자부품의 냉각이 있다. 초음파 냉각 기술은 작동 유체로, 기존의 지구온난화를 유발하는 프레온 가스 대신에 Ar(아르곤), N2(질소) 등의 기체로 대체가 가능하다. 또한 움직이는 부품이 없어 높은 내구성을 가질 수 있다. 그러므로 이러한 환경 문제와 내구성 관점에서 초음파 냉각 장치의 개발이 필요하다. 본 논문에서는 설계와 제작 공정에 대하여 설명하고 있다. 이 시스템을 설계할 때, 냉각기 시제품을 이용하여 유효성 테스트를 수행하였다. 이 결과를 바탕으로, ANSYS 프로그램을 사용한 유한요소해석을 수행하였다. 반공진 주파수는 34.8 kHz로 예측이 되었으며, 이는 실험치인 34.6 kHz과 0.6 %의 오차로 잘 일치하였다. 또한 초음파 웨이브가이드의 반공진 주파수는 39.4 kHz로 예측이 되었고, 역시 실험치인 39.8 kHz과 1.0 %의 오차로 잘 일치함을 알 수 있었다. 이러한 결과를 바탕으로 볼 때, 개발된 초음파 웨이브가이드는 마이크로칩의 냉각에 활용 될 수 있을 것으로 보인다.

Global Ultrasonic System for Autonomous Navigation of Indoor Mobile Robots

  • Park, Seong-Hoon;Yi, Soo-Yeong;Jin, Sang-Yoon;Kim, Jin-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, we propose a global ultrasonic system for the self-localization and autonomous navigation of indoor mobile robots. The ultrasonic sensor is regarded as the most cost-effective ranging system among the possible alternatives, and it is widely used for general purpose, since it requires simple electronic drivers and has relatively high accuracy. The global ultrasonic system presented in this paper consists of four or more ultrasonic generators fixed at reference positions in the global coordinates of an indoor environment and two receivers mounted on the mobile robots. By using the RF (Radio Frequency) modules added to the ultrasonic sensors, the robot is able to control the ultrasonic generation and to obtain the critical distances from the reference positions, which are required in order to localize is position in the global coordinates. A kalman filter algorithm designed for the self-localization using the global ultrasonic system and the experimental results of the autonomous navigation are presented in this paper.

  • PDF

음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성 (Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권3호
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.