Browse > Article
http://dx.doi.org/10.12989/sss.2014.13.4.587

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis  

Vivar-Perez, Juan M. (German Aerospace Center (DLR), Institute of Composite Structures and Adaptive Systems)
Duczek, Sascha (Otto-von-Guericke University of Magdeburg, Institute of Mechanics, Universitatsplatz)
Gabbert, Ulrich (Otto-von-Guericke University of Magdeburg, Institute of Mechanics, Universitatsplatz)
Publication Information
Smart Structures and Systems / v.13, no.4, 2014 , pp. 587-614 More about this Journal
Abstract
In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.
Keywords
analytical methods; spectral finite elements; higher order finite elements; piezoelectricity; structural health monitoring; Lamb waves;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vivar-Perez, J.M. (2012), Analytical and spectral methods for the simulation of elastic waves in thin plates, Technical Report: Number 441 in Reihe 20, Fortschrit- Berichte VDI. VDI Verlag.
2 Vivar-Perez, J. M., Willberg, C. and Gabbert, U. (2009a), "Simulation of piezoelectric induced Lamb waves in plates", PAMM-Proc. Appl. Math. Mech., 9, 503-504.   DOI   ScienceOn
3 von Ende, S. and Lammering, R. (2009), "Modeling and simulation of Lamb wave generation with piezoelectric plates", Mech. Adv. Mater. Struct., 16(3), 188-197.   DOI   ScienceOn
4 Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009b), "Simulation of piezoelectric Lamb waves in plate structures", Proceedings of the International Conference on Structural Engineering Dynamics. ICEDyn Ericeira, Portugal. 22.-24. June.
5 von Ende, S., Schafer, I. and Lammering, R. (2007), "Lamb wave excitation with piezoelectric wafers - an analytical approach", Acta Mech., 193(3-4), 141-150.   DOI   ScienceOn
6 Von Ende, S. and Lammering, R. (2007), "Investigation on piezoelectrically induced Lamb wave generation and propagation", Smart Mater. Struct., 16(5), 1802-1809.   DOI   ScienceOn
7 Wang, X., Lu, Y. and Tang, J. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: I. system analysis", Smart Mater. Struct., 17(2), 025033, doi:10.1088/0964-1726/17/2/025033.   DOI
8 Wilcox, P. (2004), "Modeling the excitation of Lamb and SH waves by point and line sources", AIP Conference Proc., 700, 206-213.
9 Willberg, C., Vivar-Perez, J.M. and Gabbert, U. (2009a), "Lamb wave interaction with defects in homogeneous plates", Proceedings of the International Conference on Structural Engineering Dynamics (ICEDyn), Ericeira, Portugal. 22.-24. June.
10 Willberg, C., Vivar-Perez, J.M., Ahmad, Z. and Gabbert, U. (2009b), "Simulation of piezoelectric induced Lamb wave motion in plates", Proceedings of the 7th International Workshop on Structural Health Monitoring 2009: From System Integration to Autonomous Systems.
11 Willberg, C., Duczek, S., Vivar-Perez, J.M., Schmicker, D. and Gabbert, U. (2012), "Comparison of different higher order finite element schemes for the simulation of Lamb waves", Comput. Meth. Appl. Mech. Eng., 241-244, 246-261.   DOI
12 Xu, B., Shen, Z., Ni, X. and Lu, J. (2004), "Numerical simulation of laser-generated ultrasound by the finite element method", J. Appl. Phys., 95(4), 2116- 2121.   DOI   ScienceOn
13 Yu, Z.S., Cai, Y.Z., Oh, M.J., Kim, T.W. and Peng, Q.S. (2006), "An efficient method for tracing planar implicit curves", J. Zhejiang University Sci. A, 7(7), 1115-1123.   DOI
14 Achenbach, J.D. (1999), "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction", J. Acoust. Soc. Am., 106(1), 83-90.   DOI
15 Achenbach, J.D. (2003), Reciprocity in elastodynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, United Kindom.
16 Achenbach, J.D. (1973), Wave propagation in elastic solids, (Eds. H.A. Lauwerier and W. T. Koiter), North-Holland Series in Applied Mathematics and Mechanics, volume 16, North Holland, Amsterdam, The Netherlands.
17 Achenbach, J.D. (1998), "Lamb waves as thickness vibrations superimposed on a membrane carrier wave", J. Acoust. Soc. Am., 103(5), 2283-2286.   DOI   ScienceOn
18 Achenbach, J.D. and Xu, Y. (1999), "Use of elastodynamic reciprocity to analyze point-load generated axisymmetric waves in a plate", Wave Motion, 30(1), 57-67.   DOI   ScienceOn
19 Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int. J. Solids Struct., 37(1, 2), 13-27.   DOI   ScienceOn
20 Ahmad, Z.A.B., Vivar-Perez, J.M., Willberg, C. and Gabbert, U. (2009), "Lamb wave propagation using wave finite element method", PAMM- Proc. Appl. Math. Mech., 9, 509-510.   DOI   ScienceOn
21 Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media: solution of forward and inverse problems", Acta Mech., 169, 153-185.   DOI
22 Bartoli, I., Marzania, A., Lanza di Scalea, F. and Violab, E. (2006), "Modeling wave propagation in damped waveguides of arbitrary cross-section", J. Sound Vib., 295(3-5), 685-707.   DOI   ScienceOn
23 Bonnet, M. and Constantinescu, A. (2005), "Inverse problems in elasticity", Inverse Probl., 21(2), 1-50.   DOI   ScienceOn
24 Boyd, J.P. (2000), Chebyshev and fourier spectral methods (2nd Ed.), Dover, New York, USA.
25 Chang, Z. and Mal, A. (1999), "Scattering of Lamb waves from a rivet hole with edge cracks", Mech. Mater., 31(3), 197-204.   DOI   ScienceOn
26 Delsanto, P.P., Whitcombe, T., Chaskelis, H.H. and Mignogna, R.B. (1992), "Connection machine simulation of ultrasonic wave propagation in materials. I: The one-dimensional case", Wave Motion, 16(1), 65-80.   DOI   ScienceOn
27 Delsanto, P.P., Schechter, R.S., Chaskelisb, H.H., Mignogna, R.B. and Kline, R. (1994), "Connection machine simulation of ultrasonic wave propagation in materials. II: The two-dimensional case", Wave Motion, 20(4), 295-314.   DOI   ScienceOn
28 Doyle, J.F. (1997), Wave propagation in structures: spectral analysis using fast discrete Fourier transform. 2 edition, Mechanical Engineering Series, Springer, New York, USA.
29 Galan, J.M. and Abascal, R. (2002), "Numerical simulation of Lamb wave scattering in semi-infinite plates", Int. J. Numer. Meth. Eng., 53(5), 1145-1173.   DOI   ScienceOn
30 Delsanto, P.P., Schechter, R.S. and Mignogna, R.B. (1997), "Connection machine simulation of ultrasonic wave propagation in materials III: The three-dimensional case", Wave Motion, 26(4), 329-339.   DOI
31 Duczek, S., Willberg, C., Schmicker, D. and Gabbert, U. (2012), "Development, validation and comparison of higher order finite element approaches to compute the propagation of Lamb waves efficiently", Key Eng. Mater., 518, 95-105.   DOI
32 Fornberg, B. (1998), A practical guide to pseudospectral methods, (Eds. P.G. Ciarlet, A. Iserles, R.V. Kohn, and M.H. Wright), Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, United Kindom.
33 Gazis, D.C. (1958), "Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders", J. Acoust. Soc. Am., 30(8), 786-794.   DOI
34 Giurgiutiu, V. (2005), "Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intel. Mat. Syst. Str., 16, 291-305.   DOI   ScienceOn
35 Glushkov, E.V., Glushkova, N.V., Seemann, W. and Kvasha, O.V. (2006). "Elastic wave excitation in a layer by piezoceramic patch actuators", Acoust. Phys., 52(4), 398-407.   DOI
36 Glushkov, Y.V., Glushkova, N.V. and Krivonos, A.S. (2010), "The excitation and propagation of elastic waves in multilayered anisotropic composites", J. Appl. Math. Mech., 74(3), 297-305.   DOI
37 Gomilko, A.M., Gorodetskaya, N.S. and Meleshko, V.V. (1991), "Longitudinal Lamb waves in a semi-infinite elastic layer", Int. J. Appl. Mech., 27(6), 577-581.
38 Jackson, J.D. (1998), Classsical electrodynamics (3rd Ed.), John Wiley & Sons, Inc. New York, USA.
39 Gopalakrishnan, S., Chakraborty, A. and Mahapatra, D.R. (2008), Spectral finite element method, (Ed. K.J. Bathe), Computational Fluid and Solid Mechanics, volume XIV. Springer, New York, USA.
40 Graff, K.F. (1975), Wave motion in elastic solids, Oxford University Press, London, United Kindom.
41 Hayashi, T. and Kawashima, K. (2002), "Multiple reflections of Lamb waves at a delamination", Ultrasonics, 40(1-8), 193-197.   DOI   ScienceOn
42 Holden, A. (1951), "Longitudinal modes of elastic waves in isotropic cylinders and slabs", Bell Syst. Technical J., 30(4), 956-969.   DOI
43 Huang, H., Pamphile, T. and Derriso, M. (2008), "The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch", Smart Mater. Struct., 17(5), 1-13.
44 Jin, J., Quek, S.T. and Wang, Q. (2003), "Analytical solution of excitation of Lamb waves in plates by inter-digital transducers", P. Roy. Soc. Lond. A, 459(2033), 1117-1134.   DOI   ScienceOn
45 Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2011), "Investigation of Lamb elastic waves in anisotropic multilayered composites applying the Green's matrix", Ultrasonics, 51(1), 17-28.   DOI   ScienceOn
46 Kudela, P. and Ostachowicz, W.M. (2008), "Wave propagation modelling in composite plates", Appl. Mech. Mater., 9, 89-104.   DOI
47 Kudela, P. and Ostachowicz, W. M. (2009), "3D time-domain spectral elements for stress waves modelling", J. Physics, 181(1), 1-8.
48 Lee, B.C. and Staszewski, W.J. (2003b), "Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage", Smart Mater. Struct., 12(5), 815-824.   DOI
49 Lamb, H. (1917), "On waves in an elastic plate", P. Roy. Soc. A, 93, 114-128.   DOI
50 Lee, B.C. and Staszewski, W.J. (2003a), "Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation", Smart Mater. Struct., 12(5), 804-814.   DOI   ScienceOn
51 Leonard, K.R., Malyarenko, E.V. and Hinders, M. K. (2002), "Ultrasonic Lamb wave tomography", Inverse Probl., 18(6), 1795-1808.   DOI   ScienceOn
52 Liu, G.R. (2002), "A combined finite element/strip element method for analyzing elastic wave scattering by cracks and inclusions in laminates", Comput. Mech., 28(1), 76-81.   DOI
53 Lyon, R.H. (1955), "Response of an elastic plate to localized driving forces", J. Acoust. Soc. Am., 27(2), 259-265.   DOI
54 Love, A.E. (1911), Some problems of geodynamics, Cambridge University Press, Cambridge, United Kindom.
55 Loveday, P.W. (2007), "Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements", IEEE T. Ultrason. Ferr., 54(10), 2045-2051.   DOI   ScienceOn
56 Lu, Y., Wang, X., Tang, J. and Ding, Y. (2008), "Damage detection using piezoelectric transducers and the Lamb wave approach: II. Robust and quantitative decision making", Smart Mater. Struct., 17(2), 025034, doi:10.1088/0964-1726/17/2/025034.   DOI   ScienceOn
57 Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323.   DOI
58 Morvan, B., Wilkie-Chancellier, N., Duflo, H., Trinel, A. and Duclos, J. (2003), "Lamb wave reflection at the free edge of a plate", J. Acoust. Soc. Am., 113(3), 1417-1425.   DOI   ScienceOn
59 Mindlin, R.D. and Medick, M.A. (1959), "Extensional vibrations of elastic plates", J. Appl. Mech. - T ASME, 26, 561-569.
60 Mindlin, R.D. (1960), Waves and vibrations in isotropic elastic plates, (Eds. J.N. Goodier and N.J. Hoff) First Symposium on Naval Structural Machanics ,1958. Pergamon, Oxford .
61 Muller, D.E. (1959), "A method for solving algebraic equations using an automatic computer", Math. Comput., 10(56), 208-215.
62 Onoe, M.A. (1955), A study of the branches of the velocity-dispersion equations of elastic plates and rods, Technical report: Report Joint Commitee on Ultrasonics of the Institute of Electrical Communication engineers and the Acoustical society of Japan.
63 Ostachowicz, W.M., Kudela, P., Krawczuk, M. and Zak, A. (2012), Guided waves in structures for SHM: the time-domain spectral element method, John Wiley & Sons, Ltd, United Kindom.
64 Peng, H., Meng, G. and Li., F. (2009), "Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection", J. Sound Vib., 320, 942-954.   DOI   ScienceOn
65 Rose, J.L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Press. Vessel T. - ASME, 124(3), 273-282.   DOI   ScienceOn
66 Raghavan, A. and Cesnik, C.E.S. (2004), "Modeling of piezoelectric-based Lamb wave generation and sensing for structural health monitoring", Proc. SPIE, 5391, 419-430.
67 Sirohi, J. and Chopra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intel. Mater. Syst. Str., 11, 246-247.   DOI
68 Raghavan, A. and Cesnik C.E.S. (2007), "Review of guided-wave structural health monitoring", Shock Vib., 39(2), 91-114.   DOI   ScienceOn
69 Rayleigh, L. (1885), "Waves propagated along the plane surface of an elastic solid", Proc. London Math. Soc., 20, 225-234.
70 Royer, D. and Dieulesaint, E. (2000), Elastic waves in solids I: free and guided propagation, Springer, Berlin, Germany.
71 Su, Z. and Ye, L. (2009), Identification of damage using Lamb waves. from fundamentals to applications, (Eds. F. Pfeiffer and P. Wriggers), Lecture Notes in Applied and Computational Mechanics, volume 48, Springer, London, United Kindom.
72 Sun, J.H. and Wu, T.T. (2009), "A Lamb wave source based on the resonant cavity of phononic-crystal plates", IEEE T. Ultrason. Ferr., 59(1), 121-128.
73 Tian, J., Gabbert, U., Berger, H., and Su, X. (2004), "Lamb wave interaction with delaminations in CFRP laminate", Comput. Mater. Continua, 1(4), 327-336.
74 Trefethen, L.M. (2000), Spectral methods in MATLAB. SIAM, USA.
75 Velichko, A. and Wilcox, P.D. (2007), "Modeling the excitation of guided waves in generally anisotropic multilayered media", J. Acoust. Soc. Am., 121(1), 60-69.   DOI   ScienceOn
76 Viktorov, I.A. (1967), Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, USA.
77 Karmazin, A., Kirillova, E., Seemann, W. and Syromyatnikov, P. (2010), "Modelling of 3d steady-state oscillations of anisotropic multilayered structures applying the Green's functions", Adv. Theor. Appl. Mech., 3(9), 425-445.
78 Osborne, M.F.M. and Hart, S.D. (1945), "Transmission, reflection, and guiding of an exponential pulse by a steel plate in water. I. theory", J. Acoust. Soc. Am., 17(1), 1-18.   DOI
79 Ahmad, Z.A.B. (2011), Numerical simulations of waves in plates using a semi-analytical finite element method, Technical report: Fortschritt-Berichte VDI, Number 437 in Reihe 20-Rechnerunterstutze Verfahren. VDI Verlag.
80 Gopalakrishnan, S. and Mitra, M. (2010), Wavelet methods for dynamical problems: with application to metallic, composite, and nano-composite structures, CRC Press Inc, Florida, USA.