DOI QR코드

DOI QR Code

Vibration characteristics of an ultrasonic waveguide for cooling

냉각용 초음파 웨이브가이드의 진동 특성

  • Kim, Hyunse (Energy Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Lim, Euisu (Energy Systems Research Division, Korea Institute of Machinery and Materials)
  • Received : 2020.07.06
  • Accepted : 2020.09.14
  • Published : 2020.11.30

Abstract

Ultrasound has been widely used in various industrial fields. One of challenging application areas is cooling microelectronics. Ultrasonic cooling systems can work with air, argon (Ar) and nitrogen (N2) instead of conventional refrigerant such as freon gas, which can cause global warming. Furthermore, ultrasonic systems do not have moving parts, thus high durability can be obtained. So it is necessary to develop ultrasonic cooling systems due to environmental issues and durability points. In this paper, the design and fabrication processes are explained. When designing the system, a feasibility test was performed with a prototype cooler. Based on the result, finite element analysis with ANSYS software was performed. The predicted anti-resonance frequency for a piezoelectric actuator was 34.8 kHz, which was in good agreement with the experimental result of 34.6 kHz with 0.6% error. In addition, the predicted anti-resonance frequency for the ultrasonic waveguide was 39.4 kHz, which also agreed well with the experimental value of 39.8 kHz with 1.0% error. Based on these results, the developed ultrasonic waveguide might be applicable in microchip cooling.

초음파는 다양한 산업 분야에서 널리 사용이 되고 있다. 그 중에 도전적인 분야로 전자부품의 냉각이 있다. 초음파 냉각 기술은 작동 유체로, 기존의 지구온난화를 유발하는 프레온 가스 대신에 Ar(아르곤), N2(질소) 등의 기체로 대체가 가능하다. 또한 움직이는 부품이 없어 높은 내구성을 가질 수 있다. 그러므로 이러한 환경 문제와 내구성 관점에서 초음파 냉각 장치의 개발이 필요하다. 본 논문에서는 설계와 제작 공정에 대하여 설명하고 있다. 이 시스템을 설계할 때, 냉각기 시제품을 이용하여 유효성 테스트를 수행하였다. 이 결과를 바탕으로, ANSYS 프로그램을 사용한 유한요소해석을 수행하였다. 반공진 주파수는 34.8 kHz로 예측이 되었으며, 이는 실험치인 34.6 kHz과 0.6 %의 오차로 잘 일치하였다. 또한 초음파 웨이브가이드의 반공진 주파수는 39.4 kHz로 예측이 되었고, 역시 실험치인 39.8 kHz과 1.0 %의 오차로 잘 일치함을 알 수 있었다. 이러한 결과를 바탕으로 볼 때, 개발된 초음파 웨이브가이드는 마이크로칩의 냉각에 활용 될 수 있을 것으로 보인다.

Keywords

References

  1. Y. Luo, Z. Zhang, X. Wang, and Y. Zheng, "Ultrasonic bonding for thermoplastic microfluidic devices without energy director," Microelectronic Engineering, 87, 2429-2436 (2010). https://doi.org/10.1016/j.mee.2010.04.020
  2. S. H. Ng, Z. F. Wang, and N. F. de Rooij, "Microfluidic connectors by ultrasonic welding," Microelectronic Engineering, 86, 1354-1357 (2009). https://doi.org/10.1016/j.mee.2009.01.048
  3. H. Mekaru, H. Goto, and M. Takahashi, "Development of ultrasonic micro hot embossing technology," Microelectronic Engineering, 84, 1282-1287 (2007). https://doi.org/10.1016/j.mee.2007.01.235
  4. H. Ahn, J. H. Jin, and W. Moon, "Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air" (in Korean), J. Acoust. Soc. Kr. 39, 87-97 (2020).
  5. G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America, New York, 2002), pp. 23-24.
  6. M. Kim, J. Kim, M. Kim, and K. Ha, "Visualization of temperature elevation due to focused ultrasound in dissipative acoustic medium" (in Korean), J. Acoust. Soc. Kr. 33, 21-30 (2014). https://doi.org/10.7776/ASK.2014.33.1.021
  7. A. Gopinath and F. Mills, "Convective heat transfer from a sphere due to acoustic streaming," J. Heat Transfer. 115, 332-341 (1993). https://doi.org/10.1115/1.2910684
  8. P. Vainshtein, M. Fichman, and C. Cutfinger, "Acoustic enhancement of heat transfer between two parallel plates," Int. J. Heat Mass Transf. 38, 1893-1899 (1995). https://doi.org/10.1016/0017-9310(94)00299-B
  9. B.-G. Loh, S. Hyun, P. I. Ro, and C. Kleinstreuer, "Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer," J. Acoust. Soc. Am. 111, 875-883 (2002). https://doi.org/10.1121/1.1433811
  10. J. A. Adeff and T. J. Hofler, "Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator," J. Acoust. Soc. Am. 107, L37 (2000). https://doi.org/10.1121/1.429324
  11. F. Zink, J. Vipperman, and L. Schaefer, "CFD simulation of thermoacoustic cooling," Int. J. Heat Mass Transf. 53, 3940-3946 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.012
  12. B. L. Minner, J. E. Braun, and L. Mongeau, "Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator," ASHRAE Transactions, 103, 873 (1997).
  13. S.-I. Sakamoto and Y. Watanabe, "The experimental studies of thermoacoustic cooler," Ultrasonics, 42, 53-56 (2004). https://doi.org/10.1016/j.ultras.2004.01.086
  14. E. C. Luo, W. Dai, Y. Zhang, and H. Ling, "Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine," Ultrasonics, 44, e1531-e1533 (2006). https://doi.org/10.1016/j.ultras.2006.08.002
  15. O. G. Symko, E. Abdel-Rahman, Y. S. Kwon, M. Emmi, and R. Behunin, "Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics," Microelectronics Journal, 35, 185-191 (2004). https://doi.org/10.1016/j.mejo.2003.09.017
  16. M. Flitcroft and O. G. Symko, "Ultrasonic thermoacoustic energy converter, Ultrasonics, 53, 672-676 (2013). https://doi.org/10.1016/j.ultras.2012.10.003