• Title/Summary/Keyword: ultra high frequency

Search Result 391, Processing Time 0.023 seconds

Variation in Echolocation and Prey-capture Behavior of Rhinolophus ferrumequinum during Foraging Flight (관박쥐(Rhinolophus ferrumequinum)의 먹이포획 과정에 대한 행동 및 반향정위 변화)

  • Chung, Chul Un;Kim, Sung Chul;Jeon, Young Shin;Han, Sang Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • In this study, we analyzed the changes in the echolocation and prey-capture behavior of the horseshoe bat Rhinolophus ferrumequinum from search phase to capture time. The experiment was conducted in an indoor free-flight room fitted with an ultra-high-speed camera. We found that the bats searched for food while hanging from a structure, and capturing was carried out using the flight membrane. In addition, it was confirmed that the mouth and uropatagium were continuously used in tandem during the capturing process. Furthermore, using Constant Frequency (CF), we confirmed that the prey catching method reflected the wing morphology and echolocation pattern of R. ferrumequinum. The echolocation analysis revealed that the pulse duration, pulse interval, peak frequency, start-FM-bandwidth, and CF duration decreased as the search phase approached the terminal phase. Detailed analysis of echolocation pulse showed that the end-FM bandwidth, which increases as it gets nearer to the capture time of prey, was closely related to the accurate grasp of the location of an insect. At the final moment of prey capture, the passive listening that stopped the divergence of the echolocation was identified; this was determined to be the process of minimizing the interruption from the echo of the echolocation call emitted from the bat itself and sound waves emitted from the prey.

Performance Evaluation of Time Hopping Binary PPM Impulse Radio System for Indoor Multiple Access Communication (실내 다원접속 통신을 위한 TH Binary PPM IR 시스템의 성능 평가)

  • 이양선;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1032-1037
    • /
    • 2002
  • In this paper, derived monocycle pulse that application is possible within permission frequency band (3.1 ~ 10.6GHz) that establish in FCC. Also, PPM modulated TH IR system simulator is designed in AWGN environment. It is analyzed monocycle pulse specific property and system performance using simulator. Also, analyzed BER performances of IR system in multiple access interference environment using proposed parameters. According to result, application of possible pulse duration$(t_n)$ is very limited by 0.04~0.0326 ns in permission frequency range that establish in FCC. In the case of same pulse signal power, we could know that system performance changes by $N_s$ regardless of pulse duration. IR system that need high speed transmission more than 50 Mbps in multiple access interference environment could know that very serious performance decrease by multiple access Interference happens.

A Study on Performance Improvement of CMMB Receiver to Reduce an Adjacent Channel Interference (인접 채널 간섭 제거를 통한 CMMB 수신기의 성능 향상에 관한 연구)

  • Yu, Yeong-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.364-371
    • /
    • 2012
  • Currently, CMMB(China Mobile Multimedia Broadcasting) and the conventional analog TV broadcasting have transmitted by using UHF(Ultra High Frequency : 474MHz~754MHz) band. Normally, the transmission power of the digital TV broadcasting is lower than the conventional analog TV broadcasting to protect the reception quality of the conventional analog TV broadcasting. The reception sensitivity of CMMB receiver has severely deteriorated due to adjacent the conventional analog TV broadcasting signals which called ACI (Adjacent Channel Interference). To improve the reception sensitivity of a CMMB receiver on ACI environment, this paper proposed a simple method which is tuning a cut off frequency of LPF (Low Pass Filter). From the experiment, the reception sensitivity of CMMB receiver was improved as 11.3dB.

A Novel Carrier Leakage Suppression Scheme for UHF RFID Reader (UHF 대역 RFID 리더 반송파 누설 억압 연구)

  • Jung, Jae-Young;Park, Chan-Won;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.489-499
    • /
    • 2011
  • RFID technologies, which allow collecting, storing, processing, and tracking information by wirelessly recognizing the inherent ID of object through an attached electronic tag, have a variety of application areas. This paper presents a novel carrier leakage suppression RF(CLS-RF) front-end for ultra-high-frequency RF identification reader. The proposed reader CLS-RF front-end structure generates the carrier leakage replica through the nonlinear path that contains limiter. The limiting function only preserves the frequency and phase information of the leakage signal and rejects the amplitude modulated tag signal in the envelope. The carrier leakage replica is then injected into the linear path that contains phase shifter. Therefore, the carrier leakage signal is effectively cancelled out, while not affecting the gain of the desired tag backscattering signal. We experimentally confirm that the prototype shows a significant improvement in the leakage to signal ratio by up to 36 dB in 910 MHz, which is consistent with our simulation results.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Optimum Design of Junctionless MOSFET Based on Silicon Nanowire Structure and Analysis on Basic RF Characteristics (실리콘 나노 와이어 기반의 무접합 MOSFET의 최적 설계 및 기본적인 고주파 특성 분석)

  • Cha, Seong-Jae;Kim, Kyung-Rok;Park, Byung-Gook;Rang, In-Man
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The source/channel/drain regions are formed by ion implantation with different dopant types of $n^+/p^{(+)}/n^+$ in the fabrication of the conventional n-type metal-oxide-semiconductor field effect transistor(NMOSFET). In implementing the ultra-small devices with channel length of sub-30 nm, in order to achieve the designed effective channel length accurately, low thermal budget should be considered in the fabrication processes for minimizing the lateral diffusion of dopants although the implanted ions should be activated as completely as possible for higher on-current level. Junctionless (JL) MOSFETs fully capable of the the conventional NMOSFET operations without p-type channel for enlarging the process margin are under researches. In this paper, the optimum design of the JL MOSFET based on silicon nanowire (SNW) structure is carried out by 3-D device simulation and the basic radio frequency (RF) characteristics such as conductance, maximum oscillation frequency($f_{max}$), current gain cut-off frequency($f_T$) for the optimized device. The channel length was 30 run and the design variables were the channel doping concentration and SNW radius. For the optimally designed JL SNW NMOSFET, $f_T$ and $f_{max}$ high as 367.5 GHz and 602.5 GHz could be obtained, respectively, at the operating bias condition $V_{GS}$ = $V_{DS}$ = 1.0 V).

Design of a Rectangular Waveguide Antenna for Automotive Side and Rear Radar Sensor Applications (차량 측후방 레이더 센서용 직사각형 도파관 안테나 설계)

  • Lee, Jae-Min;Ryu, Hong-Kyun;Woo, Jong-Myung;Koo, Bon-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 2012
  • In this paper, a waveguide antenna is designed and fabricated for side and rear radar sensor of vehicles in UWB (Ultra Wide Band) high band (center frequency : 9.5 GHz, -10 dB bandwidth : 600 MHz (6.4 %)). For the radar antenna, a probe fed rectangular waveguide antenna having simple structure and wide bandwidth is used. An important performance factor in this antenna is the isolation between transmitting (TX) and receiving (RX) waveguide antennas because this radar system uses TX and RX antennas separately. Thus the isolation between two antennas was simulated for E-plane and H-plane array. As a result, it was verified that the isolation of the H-plane array of the antennas is better than E-plane array, due to the TE10 mode. Therefore, H-plane arrayed waveguide antennas were mounted on a T-shaped radar module and performance of antennas was investigated. The -10 dB bandwidth of the TX and RX antenna mounted on T-shaped radar module was measured as 1000 MHz (10.52 %) and 1090 MHz (11.47 %) respectively and the isolation is less than -50 dB in the operation band. The peak gain is 7.65 dBi for the TX antenna and 7.26 dBi for the RX antenna and the beamwidth of H-plane of TX and RX antenna was measured as $64^{\circ}$ and $65^{\circ}$ respectively. Consequently, we verified that the proposed waveguide antenna is appropriate for a vehicle radar applications.

Non-uniform Linear Microphone Array Based Source Separation for Conversion from Channel-based to Object-based Audio Content (채널 기반에서 객체 기반의 오디오 콘텐츠로의 변환을 위한 비균등 선형 마이크로폰 어레이 기반의 음원분리 방법)

  • Chun, Chan Jun;Kim, Hong Kook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.169-179
    • /
    • 2016
  • Recently, MPEG-H has been standardizing for a multimedia coder in UHDTV (Ultra-High-Definition TV). Thus, the demand for not only channel-based audio contents but also object-based audio contents is more increasing, which results in developing a new technique of converting channel-based audio contents to object-based ones. In this paper, a non-uniform linear microphone array based source separation method is proposed for realizing such conversion. The proposed method first analyzes the arrival time differences of input audio sources to each of the microphones, and the spectral magnitudes of each sound source are estimated at the horizontal directions based on the analyzed time differences. In order to demonstrate the effectiveness of the proposed method, objective performance measures of the proposed method are compared with those of conventional methods such as an MVDR (Minimum Variance Distortionless Response) beamformer and an ICA (Independent Component Analysis) method. As a result, it is shown that the proposed separation method has better separation performance than the conventional separation methods.

A Security SoC embedded with ECDSA Hardware Accelerator (ECDSA 하드웨어 가속기가 내장된 보안 SoC)

  • Jeong, Young-Su;Kim, Min-Ju;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1071-1077
    • /
    • 2022
  • A security SoC that can be used to implement elliptic curve cryptography (ECC) based public-key infrastructures was designed. The security SoC has an architecture in which a hardware accelerator for the elliptic curve digital signature algorithm (ECDSA) is interfaced with the Cortex-A53 CPU using the AXI4-Lite bus. The ECDSA hardware accelerator, which consists of a high-performance ECC processor, a SHA3 hash core, a true random number generator (TRNG), a modular multiplier, BRAM, and control FSM, was designed to perform the high-performance computation of ECDSA signature generation and signature verification with minimal CPU control. The security SoC was implemented in the Zynq UltraScale+ MPSoC device to perform hardware-software co-verification, and it was evaluated that the ECDSA signature generation or signature verification can be achieved about 1,000 times per second at a clock frequency of 150 MHz. The ECDSA hardware accelerator was implemented using hardware resources of 74,630 LUTs, 23,356 flip-flops, 32kb BRAM, and 36 DSP blocks.