• 제목/요약/키워드: ubiquitous enzyme

검색결과 32건 처리시간 0.023초

더덕에서 Nucleoside Diphosphate Kinase 1 분리 및 분석 (Isolation and Characterization of Nucleoside Diphosphate Kinase 1 of Codonopsis lanceolata)

  • 김종학;양덕춘
    • 한국자원식물학회지
    • /
    • 제16권3호
    • /
    • pp.257-263
    • /
    • 2003
  • 더덕의 재배는 수익성이 높고 재배면적도 증가하지만 수요를 만족시킬 만큼 공급이 따르지 못하고 있다. 또한 재 배 상의 어려운점은 병충해, 기계수확에 의한 대규모 재배를 더욱더 곤란하게 하고 있는 실정이다. 이러한 문제점 및 환경적 스트레스에 저항하여 자랄 수 있는 식물체를 얻기 위해 더덕의 cDNA를 분석하여 스트레스 관한 유전자 Nucleoside diphosphates kinase 1(NDK 1)을 분리하여 분석하여 148개의 아미노산 서열과 다른 식물체들의 NDK 1과 높은 유사성을 가진다는 것을 알았고, 더덕의 각 조직에서 나타나는 ClNDK1의 발현을 알아보기 위해 캘러스, 잎, 줄기, 뿌리 조직의 전체 RNA를 추출하여 cDNA를 합성하고 PCR을 수행하였다 RT­PCR 분석 결과, ClNDK1은 조직 특이성 없이 캘러스, 잎, 줄기, 뿌리 조직에 대해서 모두 발현이 되었으며, 발현량, 역시 큰 차이 없이 모든 조직에서 동일하게 발현되었다. NDKs 는 환경 스트레스에 저항성을 가진다고 알려져 있지만 NDK 1 대한 연구는 아직까지 부족한 상태이다. 우리는 더덕에서 분리한 ClNDK1의 스트레스 저항성에 대해서 지속적으로 연구를 수행 할 것이다.

Identification and Characterization of Bombyx mori LDH Gene through Bioinformatics Approaches

  • Zhu, Minfeng;Chen, Keping;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제15권2호
    • /
    • pp.137-143
    • /
    • 2007
  • Lactate dehydrogenase (LDH) is a ubiquitous enzyme that plays a significant role in the clinical diagnosis of pathologic processes. Discovery of the LDH (BmLDH) gene in B. mori may shed light on its role in the biology of Lepidoptera species, and afford further understanding of the function of the enzyme. In this study, we used the bioinformatics tools to identify LDH gene in B. mori. Sequence analysis showed that BmLDH cDNA contains a 996 bp open reading frame, encoding 331 AA proteins, with seven introns. Compared with hHLDH (human heart LDH), BmLDH contained the same key active sites. Domain search and protein fold recognition analyses provide compelling evidences that the deduced protein is a LDH. Using the computer program MEGA3, we conducted a search for homologs of BmLDH among many eukaryotic species and confirmed that the BmLDH was conserved in all organisms investigated. This gene has been registered in GenBank under the accession number EU000385.

In Silico Identification of 6-Phosphogluconolactonase Genes that are Frequently Missing from Completely Sequenced Bacterial Genomes

  • Jeong, Hae-Young;F. Kim, Ji-Hyun;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.182-187
    • /
    • 2006
  • 6-Phosphogluconolactonase (6PGL) is one of the key enzymes in the ubiquitous pathways of central carbon metabolism, but bacterial 6PGL had been long known as a missing enzyme even after complete bacterial genome sequence information became available. Although recent experimental characterization suggests that there are two types of 6PGLs (DevB and YbhE), their phylogenetic distribution is severely biased. Here we present that proteins in COG group previously described as 3-oarboxymuconate cyclase (COG2706) are actually the YbhE-type 6PGLs, which are widely distributed in Proteobacteria and Fimicutes. This case exemplifies how erroneous functional description of a member in the reference database commonly used in transitive genome annotation cause systematic problem in the prediction of genes even with universal cellular functions.

Enhanced in vitro/in vivo Characteristics of Glucagon-like Peptide-1 by PEGylation

  • Han, H.S.;Youn, Y.S.;Oh, S.H.;Hong, S.T.;Lee, J.E.;Lee, S.O.;Lee, K.C.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.298.2-298.2
    • /
    • 2003
  • The insulinotropic hormone, glucagons-like peptide-1 (GLP-1), which has been proposed as a new potential therapeutics for type-II diabetes, but this is metabolized extremely rapidly by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV), forming a metabolite, which acts as an antagonist at the GLP-1 receptor. (omitted)

  • PDF

Advanced Lipid Extraction Method for the Determination of the Phospholipase D Activity

  • Yon, Chang-Suek;Lee, Min-Ho;Oh, Doo-Yi;Kim, Dal-Soo;Lee, Ki-Sung;Han, Joong-Soo
    • Archives of Pharmacal Research
    • /
    • 제26권6호
    • /
    • pp.478-481
    • /
    • 2003
  • Phospholipase D is a ubiquitous enzyme that plays an important role in various lipid mediated cellular signaling pathways and produces rare phospholipids, phosphatidylethanol or phosphatidylbutanol, instead of phosphatidic acid with unique catalytic activity transphosphatidylation in the presence of primary alcohols. The reaction products, phosphatidylethanol or phosphatidylbutanol are used as markers of in vitro phospholipase D activity in many studies. For the sensitive detection of the phospholipase D products, we developed an advanced lipid extraction method that facilitates recovery of the compounds. With the new method, the activity change of phosaholipase D by agonists could be detected more easily and the recovery rate was also increased. The increase of detected enzyme activity change was about double fold compared to the conventional lipid extraction method. This method provides selective force for the phospholipase D products in the extraction procedure.

The Arabidopsis beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene

  • Liang, Ying Shi;Bae, Hee-Jin;Kang, Sang-Ho;Lee, Theresa;Kim, Min Gab;Kim, Young-Mi;Ha, Sun-Hwa
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.325-331
    • /
    • 2009
  • To efficiently express a gene of interest in transgenic plants, the choice of promoter is a crucial factor as it directly affects the expression of the transgene that will yield the desired phenotype. The Arabidopsis ${\beta}-carotene$ hydroxylase 1 gene (AtBch1) shows constitutive and ubiquitous expression and was thus selected as one of best candidates for constitutive promoter analysis by both in silico northern blotting and semi-quantitative RT-PCR analysis. To investigate AtBch1 promoter activity, the 1,981-bp 5'-upstream region of this gene was fused with ${\beta}-glucuronidase$ (GUS) and transformed into Arabidopsis. Through the molecular characterization of transgenic leaf tissues, the AtBch1 promoter generated strong activity that drives 1.8- and 2-fold higher GUS expression than the cauliflower mosaic virus 35S (35S) promoter at the transcriptional and translational levels, respectively. Furthermore, the GUS enzyme activity driven by the AtBch1 promoter was 2.8-fold higher than that produced by the 35S promoter. By histochemical GUS staining, the ubiquitous expression of the AtBch1 promoter was observed in all tissues of Arabidopsis. Semi-quantitative RT-PCR analysis with different tissues further showed that this promoter serves as a strong constitutive driver of transgene expression in dicot plants.

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • 제44권12호
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.

GABA의 효능과 이용 (Effects and Utilization of GABA)

  • 임상동;김기성
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.45-51
    • /
    • 2009
  • $\gamma$-aminobutyric acid (GABA) is a ubiquitous nonprotein amino acid that is produced primarily by $\alpha$-decarboxylation of L-glutamic acid (Glu) catalyzed by the enzyme glutamate decarboxylase (GAD). It is well known as a neurotransmitter that regulates inhibitory neurotransmission in the mammalian central nervous system. In addition, GABA has been proved to be effective for lowering blood pressure in mammals. This paper is intended to provide basic information about GABA, including the functional and biological activity of GABA, GABA production by lactic acid bacteria, and the utilization of GABA in the production of dairy products.

  • PDF

Biochemical Study of Recombinant PcrA from Staphylococcus aureus for the Development of Screening Assays

  • Dubaele, Sandy;Martin, Christophe;Bohn, Jacqueline;Chene, Patrick
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.7-14
    • /
    • 2007
  • Helicases are ubiquitous enzymes, which utilize the energy liberated during nucleotide triphosphate hydrolysis to separate double-stranded nucleic acids into single strands. These enzymes are very attractive targets for the development of new antibacterial compounds. The PcrA DNA helicase from Staphylococcus aureus is a good candidate for drug discovery. This enzyme is unique in the genome of S. aureus and essential for this bacterium. Furthermore, it has recently been published that it is possible to identify inhibitors of DNA helicases such as PcrA. In this report, we study the properties of recombinant PcrA from S. aureus purified from Escherichia coli to develop ATPase and helicase assays to screen for inhibitors.

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권2호
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.