Browse > Article

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization  

Jarosz-Wilkolazka, Anna (Department of Biochemistry, Maria Curie-Sklodowska University)
Luterek, Jolanta (Department of Biochemistry, Maria Curie-Sklodowska University)
Malarczyk, Elzbieta (Department of Biochemistry, Maria Curie-Sklodowska University)
Leonowicz, Andrzej (Department of Biochemistry, Maria Curie-Sklodowska University)
Cho, Hee-Yeon (Dental Research Institute, School of Dentistry, UCLA)
Shin, Soo-Jeong (Wood and Paper Science, Chungbuk National University)
Cho, Nam-Seok (Wood and Paper Science, Chungbuk National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.35, no.2, 2007 , pp. 85-95 More about this Journal
Abstract
Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.
Keywords
white-rot fungi; manganese-dependent peroxidase; Bjerkandera fumosa; Mn concentration; pH; incubation temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hofrichter, M., T. Vares, K. Scheibner, S. Galkin, J. Sipil, and A Hatakka. 1999b. Mineralization and solubilization of synthetic lignin (dehydrogenation polymerizate) by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J. Biotechnol. 67: 217-228   DOI   ScienceOn
2 Kirk, T. K. and R. L. Farrell, 1987. Enzymatic 'combustion': the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-506   DOI   PUBMED   ScienceOn
3 Leonowicz, A., Nam-Seok Cho, J. Luterek, A. Wilkolazka, M. Wojtas-Wasilewska, A. Matuszewska, M. Hofrichter, D. Wesenberg, and J. Rogalski. 2001. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41(3-4): 185-227   DOI   ScienceOn
4 Martinez, M. J., F. J., Ruiz-Duenas, F. Guillen, and A. T. Martinez. 1996. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem. 237: 424-432   DOI   ScienceOn
5 Masahiro Samejima and Karl-Erik L. Eriksson. 1991. Mechanisms of redox interactions between lignin peroxidase and cellobiose: Quinone oxidoreductase. FEBS Lett. 292(1-2): 151-153   DOI   ScienceOn
6 Ortiz de Montellano, P. R. 1992. Catalytic sites of hemoprotein peroxidases. Annu. Rev. Pharmacol. Toxicol. 32: 89-107   DOI   PUBMED   ScienceOn
7 Pogni, R., M. C. Baratto, S. Giansanti, C. Teutloff, J. Verdin, B. Valderrama, F. Lendzian, W. Lubitz, R. Vazquez-Duhalt, and R. Basosi. 2005. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 44: 4267-4274   DOI   ScienceOn
8 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
9 de la Rubia, T., A. Linares, J. Perez, J. Munoz-Dorado, J. Romera, and J. Martinez. 2002. Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Res. Microbiol. 153: 547-554   DOI   ScienceOn
10 Dosoretz, C. G., H. C. Chen, and H. E. Grethlein. 1990a. Effect of Environmental Conditions on Extracellular Protease Activity in Lignolytic Cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56(2): 395-400   PUBMED
11 Dosoretz, C. G., S. B. Dass, C. A. Reddy, and H. E. Grethlein. 1990b. Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 3429-3434   PUBMED
12 Heinfling, A., M. J. Martinez, A. T. Martinez, M. Bergbauer, and U. Szewzyk. 1998a. Purification and characterization of peroxidases from the dyedecolorizing fungus Bjerkandera adusta. FEMS Microbiol. Lett. 165(1): 43-50   DOI
13 Hofrichter, M., T Vares, M. Kalsi, S. Galkin, K. Scheibner, W. Fritsche, and A. Hatakka. 1999a. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii. Appl. Environ. Microbiol. 65(5): 1864-1870   PUBMED
14 Wariishi, H., K. Valli, and M. H. Gold. 1991. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 176: 269-275   DOI   ScienceOn
15 Ruiz-Duefias, F. J., M. J. Martinez, and A. T. Martinez. 1999. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol. Microbiol. 31: 223-236   DOI   ScienceOn
16 Ruiz-Duefias, F. J., S. Camarero, M. Perez-Boada, M. J. Martinez, and A. T. Martinez. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29: 116-122   DOI   ScienceOn
17 Shimada, M. and T. Higuchi. 1991. In: Wood and Cellulosic Chemistry (Hon, D. N.-S. and Shiraiski, N., Eds.) pp. 557-619, Marcel Dekker, New York, NY
18 Steffen, K. T., A. Hatakka, and M. Hofrichter. 2003. Degradation of benzo a pyrene by the litter-decomposing basidiomycete Stropharia coronilla:role of manganese peroxidase. Appl, Environ, Microbiol. 69(7): 3957-3964   DOI
19 Kirk, T. K., S. Crean, M. Tien, E. Murtagh, and R. L. Farell. 1986. Production of multiple ligninases by Phanerochaete chrysosporium: Effect of selected growth conditions and use of a mutant strain. Enzyme Microb. Technol. 8: 27-32   DOI   ScienceOn
20 Muheim, A., R. Waldner, M. S. A. Leisola, and A. Fiechter. 1990b. An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb. Technol. 12: 204-209   DOI   ScienceOn
21 Ziegenhagen, D. and M. Hofrichter. 2000. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii. Appl. Microbiol. Biotechnol. 53: 553-557   DOI
22 Galliano, H., G. Gas, J. L. Seris, and A. M. Boudet. 1991. Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb. Technol. 13: 478-482   DOI   ScienceOn
23 Martinez, A. T. 2002. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30: 425-444   DOI   ScienceOn
24 Bao, W., Y. Fukushima, K. A. Jr. Jensen, M. A Moen, and K. E. Hamme!. 1994. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett. 354: 297-300   DOI   ScienceOn
25 Kirk, T. K., E. Schultz, W. J. Connors, L. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters of lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol. 117: 277-285   DOI
26 Sarkar, S., A. T. Martinez, and M. J. Martinez. 1997. Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochim. Biophys. Acta 1339 (1): 23-30   DOI   PUBMED   ScienceOn
27 Dzedzyulya, E. I. and E. G. Becker, 2000. Mn-peroxidase from Bjerkandera adusta 90-41. Purification and substrate specificity. Biochem. (Mosc). 65(6): 707-712
28 Leonowicz, A and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3: 55- 58   DOI   ScienceOn
29 Camarero, S., S. Sarkar, F. J. Ruiz-Duefias, M. J. Martinez, and A T. Martinez. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 2: 10324-10330
30 Forrester, I. T., A. C. Grabski, R. R. Burgess, and G. F. Leatham. 1988. Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. Biochem. Biophys. Res. Commun. 157: 992-999   DOI   ScienceOn
31 Youngs, H. L., M. Sundaramoorthy, and M. H. Gold. 2000. Effect of cadmium on manganese peroxidase Competitive inhibition of Mn-II oxidation and thermal stabilization of the enzyme. Eur. J. Biochem. 267(6): 1761-1769   DOI   ScienceOn
32 Heinfling, A., M. J. Martinez, A. T. Martinez, M. Bergbauer, and U. Szewczyk. 1998b. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl. Environ. Microbiol. 64(8): 2788-2793   PUBMED
33 Giardina, P., G. Palmieri, B. Fontanella, V. Rivieccio, and G. Sannia. 2000. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust. Arch. Biochem. Biophys. 376(1): 171-179   DOI   ScienceOn
34 Conesa, A., P. J. Punt, and C. A. van den Hondel. 2002. Fungal peroxidases: molecular aspects and applications. J. Biotechnol. 93(2): 143-158   DOI   ScienceOn
35 Muheim, A., M. S. A. Leisola, and H. E. Schoemaker. 1990a. Aryl-alcohol oxidase and lignin peroxidase from the white-rot fungus Bjerkandera adusta. J. Biotechnol. 13: 159-167   DOI   ScienceOn
36 Mester, T. and J. A Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. BioI. Chem. 273: 15412-15417   DOI   ScienceOn
37 Steffen, K. T., A. Hatakka, and M. Hofrichter. 2002. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 60(1-2): 212-217   DOI
38 Hatakka, A 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125-135   DOI
39 Mester, T., M. Pena, and J. A. Field. 1996. Nutrient regulation of extracellular peroxidases in the white rot fungus, Bjerkandera sp. strain BOS55. Appl. Microbiol. Biotechnol. 44: 778-784
40 Moreira, P. R., C. Dueaz, D. Dehareng, A. Antunes, E. Almeida-Vara, J. M. Frere, F. Xavier Malcata, and J. C. Duarte. 2005. Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J. Biotechnol. 118: 339-352   DOI   ScienceOn
41 Young, R. A. and M. Akhtar. 1998. Environmentally-friendly technologies for the pulp and paper industry, John Wiley and Sons, New York
42 Jimenez-Tobon, G. A., M. J. Penninckx, and R. Lejeune. 1997. The relationship between pellet size and production of Mn(H) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microbiol. Technol. 21: 537-542   DOI   ScienceOn
43 Wariishi, H., K. Valli, and M. H. Gold. 1992. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. BioI. Chem. 267: 23688-23695
44 Heinfling, A., F. J. Ruiz-Duefias, M. J. Martinez, M. Bergbauer, U. Szewzyk, and A. T. Martinez. 1998c. A study on reducing substrates of manganese- oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett. 428: 141-146   DOI   ScienceOn
45 Moreira, M. T., R. Sierra-Alvarez, J. M. Lema, G. Feijoo, and J. A Field. 2001. Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55. Bioresour. Technol. 78(1): 71-79   DOI   ScienceOn
46 Eriksson, K.-E. L., R. A. Blanchette, and P. Ander. 1990. Microbial and enzymatic degradation of wood components, Springer-Verlag, Berlin
47 Vares, T., M. Kalsi, and A. Hatakka. 1995. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzvmes produced by Phlebia radiaia during solid-state fermentation of wheat straw. Appl. Environ. Microbiol. 61: 3515-3520   PUBMED