Identification and Characterization of Bombyx mori LDH Gene through Bioinformatics Approaches

  • Zhu, Minfeng (Institute of Life Sciences, Jiangsu University) ;
  • Chen, Keping (Institute of Life Sciences, Jiangsu University) ;
  • Yao, Qin (Institute of Life Sciences, Jiangsu University)
  • Published : 2007.12.31

Abstract

Lactate dehydrogenase (LDH) is a ubiquitous enzyme that plays a significant role in the clinical diagnosis of pathologic processes. Discovery of the LDH (BmLDH) gene in B. mori may shed light on its role in the biology of Lepidoptera species, and afford further understanding of the function of the enzyme. In this study, we used the bioinformatics tools to identify LDH gene in B. mori. Sequence analysis showed that BmLDH cDNA contains a 996 bp open reading frame, encoding 331 AA proteins, with seven introns. Compared with hHLDH (human heart LDH), BmLDH contained the same key active sites. Domain search and protein fold recognition analyses provide compelling evidences that the deduced protein is a LDH. Using the computer program MEGA3, we conducted a search for homologs of BmLDH among many eukaryotic species and confirmed that the BmLDH was conserved in all organisms investigated. This gene has been registered in GenBank under the accession number EU000385.

Keywords

References

  1. Combet, C., C. Blanchet, C. Geourjon and G. Deleage (2000). NPS@: network protein sequence analysis. Trends Biochem. Sci., 25, 147-150 https://doi.org/10.1016/S0968-0004(99)01540-6
  2. Florea, L., G. Hartzell, Z. Zhang, G. M. Rubin and W. Miller (1998). A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res., 8, 967-974 https://doi.org/10.1101/gr.8.9.967
  3. Kumar, S., K. Tamura and M. Nei (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform., 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  4. Lambert, C., N. Leonard, X. De Bolle and E. Depiereux (2002). ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 18, 1250-1256 https://doi.org/10.1093/bioinformatics/18.9.1250
  5. Lindsay, D. T. (1963). Isozymic patterns and properties of lactate dehydrogenase from developing tissues of the chicken. J. Exp. Zool., 152, 75-89 https://doi.org/10.1002/jez.1401520108
  6. Markert, C. L. (1963). Lactate Dehydrogenase Isozymes: Dissociation and Recombination of Subunits. Science, 140, 2
  7. Markert, C. L. (1984). Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem. Funct., 2, 131-134 https://doi.org/10.1002/cbf.290020302
  8. McClendon, S., N. Zhadin and R. Callender (2005). The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway. Biophys. J., 89, 2024- 2032 https://doi.org/10.1529/biophysj.105.062604
  9. Montamat, E. E. and A. Blanco (1976). Subcellular distribution of the lactate dehydrogenase isozyme specific for testis and sperm. Exp. Cell Res., 103, 241-245 https://doi.org/10.1016/0014-4827(76)90260-3
  10. Murzin, A. G. (1993). Sweet-tasting protein monellin is related to the cystatin family of thiol proteinase inhibitors. J. Mol. Biol., 230, 689-694 https://doi.org/10.1006/jmbi.1993.1186
  11. Nathan, S. S., K. Kalaivani and K. Murugan (2006). Effect of biopesticides on the lactate dehydrogenase (LDH) of the rice leaffolder, Cnaphalocrocis medinalis (Guenee) (Insecta: Lepi-doptera: Pyralidae). Ecotoxicol. Environ. Saf., 65, 102- 107 https://doi.org/10.1016/j.ecoenv.2005.05.021
  12. Neilands, J. B. (1952). The purity of crystalline lactic dehydrogenase. Science, 115, 143-144 https://doi.org/10.1126/science.115.2980.143
  13. Park, K. J. and M. Kanehisa (2003). Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19, 1656-1663 https://doi.org/10.1093/bioinformatics/btg222
  14. Pfleiderer, G. and D. Jeckel (1957). Individual lactic acid dehydrogenases in various mammals. Biochem. Z., 329, 370-380
  15. Pineda, J. R., R. Callender and S. D. Schwartz (2007). Ligand Binding and Protein Dynamics in Lactate Dehydrogenase. Biophys. J
  16. Ponting, C. P., J. Schultz, F. Milpetz and P. Bork (1999). SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res., 27, 229-232 https://doi.org/10.1093/nar/27.1.229
  17. R. D. Cahn, E. Z., N. O. Kaplan, L. Levine (1962). Nature and Development of Lactic Dehydrogenases: The two major types of this enzyme form molecular hybrids which change in makeup during development. Science, 136, 8
  18. Read, J. A., V. J. Winter, C. M. Eszes, R. B. Sessions and R. L. Brady (2001). Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins, 43, 175-185 https://doi.org/10.1002/1097-0134(20010501)43:2<175::AID-PROT1029>3.0.CO;2-#
  19. Russell, R. B., M. A. Saqi, R. A. Sayle, P. A. Bates and M. J. Sternberg (1997). Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. J. Mol. Biol., 269, 423-439 https://doi.org/10.1006/jmbi.1997.1019
  20. Schwede, T., J. Kopp, N. Guex and M. C. Peitsch (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 31, 3381-3385 https://doi.org/10.1093/nar/gkg520
  21. Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17, 355-362 https://doi.org/10.1002/prot.340170404
  22. Whitt, G. S. (1984). Genetic, developmental and evolutionary aspects of the lactate dehydrogenase isozyme system. Cell Biochem. Funct., 2, 134-139 https://doi.org/10.1002/cbf.290020303