• Title/Summary/Keyword: type of solution

Search Result 4,014, Processing Time 0.035 seconds

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

A Study on Reusing of Electroless Ni-Cu-B Waste Solution (무전해 Ni-Cu-B 폐 도금액의 재사용에 관한 연구)

  • Oh Iee-Sik;Bai Young-Han
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Reusing of electroless Ni-Cu-B waste solution was investigated in the plating time, plating rate, solution composition and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 40% waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 6 times over than that of batch type. Plating time of 40% waste solution additive at continuous type took longer 2 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by deposited inferiority and larger decreased plating rate.

Sensitivity Analysis on the Non-tree Solution of the Minimum Cost Flow Problem (최소비용문제의 비정점 최적해에 대한 감도분석)

  • 정호연;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applied to a non-tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1a is the well known method applicable to a tree solution. However this method can not be applied to a non-tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient we present a method that the sensitivity analysis of Type 2 is solved by finding the shortest path. Besides we also show that the results of Type 2 and Type 1 are the same in a spanning tree solution. For the right-hand side constant or the capacity, the sensitivity analysis of Type 2 is solved by a simple calculation using arcs with intermediate values.

  • PDF

Sensitivity Analysis on the Degenerate Tree Solution of the Minimum Cost Flow Problem (최소비용문제의 퇴화 정점 최적해에 대한 감도분석)

  • Chung, Ho-Yeon;Park, Soon-Dal
    • IE interfaces
    • /
    • v.7 no.3
    • /
    • pp.193-199
    • /
    • 1994
  • The purpose of this paper is to develop a method of the sensitivity analysis that can be applicable to a degenerate tree solution of the minimum cost flow problem. First, we introduce two types of sensitivity analysis. A sensitivity analysis of Type 1 is the well known method applicable to a spanning tree solution. However, this method have some difficulties in case of being applied to a degenerate tree solution. So we propose a sensitivity analysis of Type 2 that keeps solutions of upper bounds remaining at upper bounds, those of lower bounds at lower bounds, and those of intermediate values at intermediate values. For the cost coefficient, we present a method that the sensitivity analysis of Type 2 is solved by using the method of a sensitivity analysis of Type 1. Besides we also show that the results of sensitivity analysis of Type 2 are union set of those of Type 1 sensitivity analysis. For the right-hand side constant or the capacity, we present a simple method for the sensitivity analysis of Type 2 which uses arcs with intermediate values.

  • PDF

A Study on Reusing of Electroless Co-Cu-P Waste Solution (무전해 Co-Cu-P 폐 도금액의 재사용에 관한 연구)

  • Bai Young-Han;Oh Lee-Sik
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.34-40
    • /
    • 2005
  • Reusing of electroless Co-Cu-P waste solution was investigated in the respect of plating time, plating rate, solution composition and deposit. Plating time of cobalt-catalytic surface took longer than that of zincated-catalytic surface. It was possible to reuse the waste solution by mixing $50\%$ fresh solution at batch type. Plating time of initial solution at continuous type took longer 7.5 times over than that of batch type. Plating time of $50\%$ waste solution additive at continuous type took longer 2.5 times over than that of batch type. Component change of cobalt-topper for electroless deposition was greatly affected by deposit inferiority and rapid decrease in plating rate.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

A Simple Method for Solving Type-2 and Type-4 Fuzzy Transportation Problems

  • Senthil Kumar, P.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.225-237
    • /
    • 2016
  • In conventional transportation problem (TP), all the parameters are always certain. But, many of the real life situations in industry or organization, the parameters (supply, demand and cost) of the TP are not precise which are imprecise in nature in different factors like the market condition, variations in rates of diesel, traffic jams, weather in hilly areas, capacity of men and machine, long power cut, labourer's over time work, unexpected failures in machine, seasonal changes and many more. To counter these problems, depending on the nature of the parameters, the TP is classified into two categories namely type-2 and type-4 fuzzy transportation problems (FTPs) under uncertain environment and formulates the problem and utilizes the trapezoidal fuzzy number (TrFN) to solve the TP. The existing ranking procedure of Liou and Wang (1992) is used to transform the type-2 and type-4 FTPs into a crisp one so that the conventional method may be applied to solve the TP. Moreover, the solution procedure differs from TP to type-2 and type-4 FTPs in allocation step only. Therefore a simple and efficient method denoted by PSK (P. Senthil Kumar) method is proposed to obtain an optimal solution in terms of TrFNs. From this fuzzy solution, the decision maker (DM) can decide the level of acceptance for the transportation cost or profit. Thus, the major applications of fuzzy set theory are widely used in areas such as inventory control, communication network, aggregate planning, employment scheduling, and personnel assignment and so on.

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF