• Title/Summary/Keyword: type 2 fuzzy variable

Search Result 12, Processing Time 0.023 seconds

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.

The Design of a Sliding Mode Controller with Fuzzy PI-type Reaching Law (퍼지 PI 형 도달법칙을 가지는 가변 구조 제어기의 설계)

  • 이재호;조기원;채창현;이상재
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, we proposed a variable structure controller with fuzzy PI-쇼pe reaching law. we fuzzified as inputs to fuzzy system Rf(representative point's orthogonal distance(rd) to switching surface and RP's distance(r) to the origin of the 2-dimensional space whose coordinates are the error and the error rate. The increments of the coefficients $k_{p}$ and $k_{i}$, of the reaching law are calculated appropriate by the simplified Mamdanl inference. The proposed fuzzy PI-type reaching law makes it reduce the chattering and has no need to tune the PI parameters of reaching law. The effectiveness of the proposed fuzzy PI-type reaching law is shown by the simulation results of the control of a Ball-balance System.

  • PDF

A parameter tuning method in fuzzy control systems (퍼지제어 시스템에서의 파라미터 동조방법)

  • 최종수;김성중;권오신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.479-483
    • /
    • 1992
  • This paper defines the relationship between PI type fuzzy control system and conventional PI control system, and discusses the relationship of parameters and control action in fuzzy controller. The tuning algorithm that updates ouput variable scaling factor of fuzzy controller is proposed .The proposed sheme is applied to the simulations of 2 selected dynamical plants. The simulation results show that the controller is effective in controlling dynamical plants.

  • PDF

Fuzzy Control Algorithms for the Compressor and the Electronic Expansion Valve of a Multi-type Air-conditioning System using Multiple Input Variables (다입력변수를 사용한 멀티형 공조시스템 압축기와 전자팽창밸브의 퍼지 제어 알고리즘)

  • Han, Do-Young;Park, Kwan-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • In order to control multi-zone temperatures, a multi-type air-conditioning system may be used. In this study, control algorithms for the compressor and the electronic expansion valve of a multi-type air-conditioning system were developed by using fuzzy logics. The compressor control algorithm was composed of a compressor pressure setpoint algorithm, a compressor pressure setpoint reset algorithm, and a compressor frequency setpoint algorithm. The electronic expansion valve control algorithm was composed of an indoor temperature control algorithm, and a superheat control algorithm. These algorithms were applied to a multi-type air-conditioning system. Test showed good results for the control of a multi-type air-conditioning system.

Design and Implementation of Fuzzy PID Controller (Fuzzy PID 제어기 설계 및 구현)

  • Shin Wee-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • In this paper, we propose a fuzzy PID controller of new method. There are two problems in absolute digital PID controller. First, much calculation time need for obtain the sum of data at each period. Second, this is problem need much memory because to storage every data at the before period. We use the speed type PID digital controller to improvement such problems. In the propose controller doesn't use without adjustment the crisp output error and we doesn't use nile tables in the fuzzy inference process at the forward stage fuzzifier. We inference output member ship function by using the relation and range of two variable of PID gain parameters. We can obtained desired results through the simulation and a experiment of the hydraulic servo motor control system.

  • PDF

Design of a Fuzzy Logic Controller for a Rotary-type Inverted Pendulum System

  • Park, Byung-Jae;Ryu, Chun-ha;Choi, Bong-Yeol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.109-114
    • /
    • 2002
  • Various inverted pendulum systems have been frequently used as a model for the performance test of the proposed control system. We first identify a rotary-type inverted pendulum system by the Euler-Lagrange method and then design a FLC (Fuzzy Logic Controller) fur the plant. FLC`s are one of useful control schemes fur plants having difficulties in deriving mathematical models or having performance limitations with conventional linear control schemes. Many FLC`s imitate the concept of conventional PD (Proportional-Derivative) or PI (Proportional-Integral) controller. That is, the error e and the change-of-error are used as antecedent variables and the control input u the change of control input Au is used as its consequent variable for FLC`s. In this paper we design a simple-structured FLC for the rotary inverted pendulum system. We also perform some computer simulations to examine the tracking performance of the closed-loop system.

A Study on the Tension Control for Catenary′s cable (현수형 가선케이블의 일정 장력유지 제어에 관한 연구)

  • Hong S. I;Yoon J. H
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.153-159
    • /
    • 2000
  • The cable installed will have catenary's type that is nonlinear and variable time system. Because it has a close relation to the catenary's type to determine command value of tension for the tension control of this cable, we need to study it. The purpose of this study is automated the installation equipment (or a catenary's cable. This study shows control system that the tension of a catenary's cable is keep constant. 'rho control method is adopted the fuzzy control that is robust because the model of a control object is nonlinear and variable time system and feed-forward control to suppress overshoot as a shift begins to move. On the basis of the dynamic modeling of a catenary's cable we compose the control system with adopting fuzzy and feed-forward control has recognized the effectiveness in simulation results.

  • PDF

Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer

  • Kim, Yoo-Kyung;Jeon, Gi-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.523-529
    • /
    • 2004
  • Sliding mode control with nonlinear interpolation in the boundary layer is proposed. A modified sigmoid function is used for nonlinear interpolation in the boundary layer and its parameter is tuned by a fuzzy controller. The fuzzy controller that takes both the sliding variable and a measure of chattering as its inputs tunes the parameter of the modified sigmoid function. Owing to the decreased thickness of the boundary layer and the tuned parameter, the proposed method has superior tracking performance than the conventional linear interpolation method.

Fuzzy modelling for design of ship's autopilot (선박 자동조타기 설계를 위한 퍼지모델링)

  • Ahn, Jong-Kap;Lee, Chang-Ho;Lee, Yun-Hyung;Son, Jung-Ki;Lee, Soo-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The T-S fuzzy model of a ship is made from the nonlinear extension of Nomoto's 2nd-order model as the previous step before designing of the fuzzy type autopilot to consider the design specifications and the economic efficiency. The T-S fuzzy model is considered as a design variable of the heading angular velocity of ship. The linear models will be combined as "IF-THEN" fuzzy rules after get in this one area of the linear model(sub-system) by change of the heading angular velocity of a ship. The dynamic characteristic of a ship with the parameters of linear models and fuzzy membership functions are estimated to match by using the model adjustment technic with input/output data and a RCGA.