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Abstract

Various inverted pendulum systems have been frequently used as a model for the performance test of the proposed control
system. We first identify a rotary-type inverted pendulum system by the Euler-Lagrange method and then design a FLC (Fuzzy
Logic Controller) for the plant. FLC's are one of useful control schemes for plants having difficulties in deriving mathematical
models or having performance limitations with conventional linear control schemes. Many FLC's imitate the concept of

conventional PD (Proportional-Derivative) or PI (Proportional-Integral) controller. That is, the error e and the change-of-error ¢
are used as antecedent variables and the control input z or the change of control input Az is used as its consequent variable
for FLC's. In this paper we design a simple-structured FLC for the rotary inverted pendulum system. We also petform some
computer simulations to examine the tracking performance of the closed-loop system.
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| . Introduction

Most physical systems are nonlinear and such property
makes difficult to identify the system mathematically. So, a
nonlinear system has been frequently used to verify the
performance of the designed system. Various inverted pendulum
systems have been widely used for a test model. One of those
is the rail-cart type which consists of a cart running on a rail
and a pendulum attached to the cart. In this case it has the
moving limitation of its cart as a restriction of the control
system. Recently, there has been introduced many kinds of
inverted pendulum systems. We consider a rotary-type inverted
pendulum system.

Fuzzy Logic Controllers are one of useful control schemes
for plants having difficulties in deriving mathematical models
or having performance limitations with conventional linear
control schemes. Most works in fuzzy control fields use the
error ¢ and the change-of-error e as antecedent variables of
the fuzzy control rule regardless of complexity of controlled
plants. Either control input # (PD-type) or incremental control
input Ju(PI-type) is typically used as its consequent variable
[1-2]. This scheme naturally comes from the concept of the
conventional PD or PI control algorithm. Although such FLC's
are proper to simple second order plants, all process states are
typically required as fuzzy input variables for complex higher
order plants. That is, all state variables must be used to
represent contents of the rule antecedent ("if” part of a rule).
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However it requires a huge number of control rules, which
makes difficult to design a FLC with good performance.

Many researches has been introduced to improve the
performance of FLC's. Tang and Mulholland [3] developed a
relation between the scaling factors of fuzzy controller and the
control gains of equivalent linear PI controller. They also
showed that the FLC can be used as a multiband control. Li
and Gatland [4-5] proposed a more systematic design method
for the PD and Pl-type FLC's. They also presented a
simplified rule generation method using two two-dimensional
spaces instead of a three-dimensional space for a PID-type
FLC. Palm [6] proposed a sliding mode fuzzy controller
which generates the absolute value of a switching magnitude
in the sliding mode control law using the error and the
change-of-error. As mentioned above most of researches use
two or more as antecedent variables for a control rule.

Strugen and Loscutoff [7] presented a design of a dynamic
stabilizer for a double inverted pendulum system. They
linearized around target and then designed a linear controller.
Furuta and Yamakita [8] proposed a swing up controller for a
rotary-type inverted pendulum system.

In this paper, we suggest a simple-structured fuzzy logic
control for a rotary-type inverted pendulum system. We first
identify it mathematically. And then we explain the design of
a simple-structured FLC in Section II. The conventional
2-input FL.C has a control rule table which is established on a
two-dimensional space of the phase plane (e, ¢). Then the
table shows the skew-symmetry for controlled plants with the
minimum phase property. This property makes possible to
design a simple-structured FLC for a rotary-type inverted
pendulum system. In Section IV, we compare the control
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performance between the conventional 2-input FLC and a
simple-structured FLC for a rotary-type inverted pendulum
system. Finally, we present a concluding remarks in Section

V.

Il. Rotary-type Inverted Pendulum System

The inverted pendulum system has been widely used as a
test model to show the performance of the proposed control
system. We here consider a rotary-type inverted pendulum
system that deals successfully with some moving limitation of
a rail-cart type. Figure 1 illustrates the structure of a
rotary-type inverted pendulum system. A servo motor is used
as an actuator and the pendulum is attached to the rotating
shaft of the motor.

Pendulum

Fig. 1. Structure of a rotary-type
inverted pendulum system.

Consider the identification of a rotary-type inverted
pendulum system. In Fig. 1, ¢ and 4 represent deflections of
rotating arm and pendulum, respectively. r and J represent a
total length and inertia of the arm, respectively. 1 denotes a
distance to the pravity center of the pendulum. A
mathematical medel can be obtained by the Euler-Lagrange
method [9]. The kinetic energy K; and the potential energy
P; are obtained as follows. Here subscripts 0 and 1 stand for
variables for the arm and pendulum, respectively.

The kinetic and potential energy in the pendulum:

K, == ml[(ar+0icosf)?+(0Isind)?]

m[ ( ézrz+ézlzc0520+2d 6 ricos 6) )
+ 07 *sin%6]

ml ézr2+ 61 +2a 0 ricosd]

Il

D=

P,=mglcosb. (2)

The kinetic and potential energy in the arm:

Ky=%7a? 3)
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Then the Lagrangian is as follows:

L = kinetic energy(K;) — potential energy(P;)
=(Ki+K;) — (P+P) )
=—%—(]+er) @'+ ma b ricosd

+ %m 9212—mglcos¢9

Thus, the Lagrangian equation is determined as followed.

a2k =0 (®)
%(%)—g—{;= r (7
Substituting Eq.(5) for Eq.(6)
-;% =ml’6 +ma ricosf
%(-a‘%—) =mPO+maricosd—ma §rising
% = —ma 0 risin+mgisind ’
we get the following equation:
mi*0 +ma ricos 0~ mglsind = 0 ®

Substituting Eq.(5) for Eq.(7)

%:([—f- mr*)a +mé ricosd
a

—g-;;(-@’- =(J+mA a +mb ricosd— m 6 risind
da

oL _, ’

a6

we get the following equation:

(J+mr*)a +mb ricosd— mrisind= r 9)

Consequently, the rotary-type inverted pendulum system is
modeled by Egs. (8) and (9).

{li. Simple-structured Fuzzy Logic Controller

A simple-structured FLC is designed for FLC's with the
skew-symmetric property in the control rule table {10]. We
first consider a 2-nd order plant and then extend to n-th order
case. Let the controlled plant be a system with n-th order
(linear or nonlinear) state equation:

™ Ax,0+ b(x,Dul) + dD,
y X,

(10

/]

with

X = [xlv X, *°° yxn]T
. -7
=[x, x, -, 2" V77,

(11

where A x,# and »(x,$ are partially known continu-
ous functions, d(¢) is the unknown external disturbance, and
w) e R and y(f) = R are the input and output of the
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system, respectively. x () € R" is the process state vector.
The control problem is to force (£ to follow a given

bounded reference input signal «x,(#). Let e(?) be the
tracking error vector as follows
e(d = x(O— xq4(» (12)
= [e, ¢ - ,e" V7.

The rule form for the conventional 2-input FLC using two
fuzzy input variables of the error and the change-of-error is as
follows:

ie: If e is LE; and
then = is LUj

¢ is LDE,,

where ;=1,2, -, M, ;=1,2,,N, and LE, LDE,
and LU are the linguistic values taken by the process state
variables e, e, and u, respectively. Here the number of
control rules is MXN.

We now consider a rule table of the conventional 2-input
FLC with the control rule form
linguistic values for error, change-of-error and control input is
five, a typical rule table is established on the space of the
error and the change-of error like Table 1 with 25 rules.

RY,;. As each number of

Table 1. Rule table for the conventional 2-input FLC.

5 ¢l LE., LE- LE LE, LE;
LDE, LUs LU-, | LU-y | LU-, | LU,
LDE, LU LUp LU-, | LU~ | LU,
LDE, LU LU LU LU-, | LU-
LDE_, LU, LU, LU LU, LU-,
LDE_, LU, LU LU, LU LU

In Table 1, subscripts -2, -1, 0, 1, and 2 denote fuzzy
linguistic values of Negative Big (NB), Negative Small (NS),
ZeRo (ZR), Positive Small (PS), and Positive Big (PB),
respectively.

Most rule tables for the minimum phase plants have a
skew-symmetric property like Table 1, namely, ;= — u
Note that the boundaries of (e, ¢) for the same control input
LU, have staircase shapes and the absolute magnitude of the

control input |«| is approximately proportional to the distance
from the main diagonal line. If the quantization levels of the
independent variables become infinitesimal, the boundaries of
Table 1 become straight lines as shown in Fig. 2.

Then the control law describes the multilevel relay controller
with five bands. Also, note that the absolute magnitude of the
control input is proportional to the distance from the following
straight line called the switching line.

;0 et+ide= 0, (13)

where A>0 is a slope of the switching line. Note that the
control inputs above and below the switching line have

PS

Fig. 2. Rule table with infinitesimal quantization levels.

opposite signs.
We now introduce a new variable called the signed
distance, d,. That is, it is a distance between the switching

line and an operating point and has a sign as follows:

_ e+ e

e o

Since the sign of the control input is negative for s,>( and
positive for s,<0 and its absolute magnitude is proportional
to the distance from the line s, =(), we can reduce the
relation between the control input and the distance as follows:

(15)

u < —d,.

Now the control rule table can be established on an
one-dimensional space of d; instead of a two-dimensional
space of e and e. That is, the control action is now
determined by d, only. The rule form for a simple-structured
FLC is given as follows:

R ¥ d, is LDL, then w is LU,,

where LDL, is the linguistic value of the signed distance in
the k-th rule. In the simple-structured FLC, the number of
rules is greatly reduced compared to the case of the
conventional 2-input FLC. Hence, we can easily add or
modify rules for fine control.

Table 2. Rule table for the simple-structured FLC.

d; LDL-, | LDL-, LDLy LDL, LDL,

u LU, LU LU, LU_, LU_,

Above scheme can be extended to the case of a general
n-input FLC. The general n-input FLC has rules of the
following form:

pt . If eis LE}, eyis LEj, -, ande,is LE}
co then wis LU,,

E=1,2 -, m",
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where m is the number of fuzzy sets for each fuzzy input
variable and LE} (i = 1,2, -, n) is the linguistic value
taken by the process state variable ¢; (= x“ D — x{~ Dy in
the k-th rule. In this case, the rule table is established on
n-dimensional space of ¢;, e;, -, and ¢,.

Similar to the two-dimensional rule table of Table 1, the
n-dimensional one for R%, also satisfies the skew-symmetric

property and the absolute magnitude of the control input is
proportional to the distance from its main diagonal hyperplane
(instead of the diagonal line in the two-dimensional table).
That is, the switching line s, is changed to the following

switching hyperplane S,.
Si: e V4,00 4 e+ e = 0. (16)

Also, d, of Eq. (14) is changed to the generalized signed
distance D, as follows:

e(n—l) + An_le(n—Z) + "‘Agé"‘ /he
Vit A+ A+ A

D, = (17
That is, D, represents the signed distance from the operating
point to the switching hyperplane of Eq. (16). Then the rule
table is equivalent to Table 2 except D, instead of 4, . From
Eq. (17) we can see that the generalized signed distance, D,

contains knowledge of all process states as well as the error
and the change-of-error.

IV. Simulation Example
Now we compare the control performance of two FLC's for
the rotary-type inverted pendulum system via computer simu-

lations. Parameters of Egs. (8) and (9) are given as Table 3.

Table 3. Parameters for a rotary-type inverted pendulum system.

symbol value [unit]
r 0.145 [m])
J 0.0044 [kg - m?]
m 0.21 [kg]
1 0.305 {m]

Fuzzy sets for simulations are shown in Fig. 3. Namely, we
used all the same fuzzy sets for error, change-of-error, signed
distance and control input. The scaling factor K for error,
change-of-error, signed distance and control input is 0.05, 6,
6, and 1, respectively. We also use the product inference and
the center-average defuzzification method.

We consider a tracking performance for the rotary-type
inverted pendulum system. Here (a) and (b) are the cases of
the conventional 2-input FLC and the simple-structured FLC,

respectively. Here we used 0.83x107% for A in the

12

NB NS ) ZR PSS PB

e é d,and u
-

4

-K 0 K
Fig. 3. The fuzzy sets for simulations,

simple-structured FLC. Figures 4, 5 and 6 show the simulation
results of tracking performances, control inputs, and tracking
errors, respectively. As shown in figures, the control
performances are almost the same even if the
simple-structured FLC has only 5 control rules.
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(a) 2-input FLC.
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(b) Simple-structured FLC.

Fig. 4. Comparison of tracking performances.
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(a) 2-input FLC.
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(b) Simple-structured FLC,

Fig. 5. Comparison of control inputs.
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Fig. 6. Comparison of tracking errors.

V. Concluding Remarks

We compared the performance of the conventional 2-input
FLC and the simple-structured FLC for a rotary-type inverted
pendulum system. We first identified the plant using the
Euler-Lagrange method. Next, we observed some properties of
the rule table for the conventional PD or Pl-type FLC. It
represented the skew symmetry and the absolute magnitude of
control input was proportional to the distance from its main
diagonal line. These properties were also satisfied in the
general n-input FLC. This facts allowed us to derive a
simple-structured FLC which uses only a single antecedent
variable. Finally, we showed that the control performance of
the simple-structured FLC is nearly the same as that of the
conventional 2-input FLC through computer simulations. Thus,

the simple-structured FLC has some advantages: The number
of fuzzy rules was greatly reduced and thus the computational
complexity was mitigated. Also, generation, modification, and
tuning of control rules were much easier.
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