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FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL
CONSTRAINT IN DIFFERENT ENVIRONMENTS

T.K. BUVANESHWARI AND D. ANURADHA∗

Abstract. In this research, we presented the type 2 fuzzy transportation
problem with additional constraints and solved by our proposed genetic al-
gorithm model, and the results are verified using the softwares, genetic al-
gorithm tool in Matlab and Lingo. The goal of our approach is to minimize
the cost in solving a transportation problem with an additional constraint
(TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter.
We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS)
using a critical value-based reduction method (CVRM). Also, we use the
centroid method (CM) to obtain the corresponding crisp value for this re-
duced fuzzy set. To achieve the best solution, GA is applied to TPAC in
type 2 fuzzy parameters. A real-life situation is considered to illustrate the
method.
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1. Introduction

The Transportation problem (TP) addresses many decision-making problems
in our real life situation such as resolving the cost of products, profit for suppliers,
decision-making for realistic multiple objective function, etc. Transportation
experts are being challenged to meet the goals of achieving effective, safe, and
dependable transportation, taking into consideration minimizing environmental
and community risks. Availability constraints, environmental degradation, lack
of safety measures, unpredictability and wastage of resources are shortlists of
these challenges faced by transportation experts. In view of these realities,
transport networks turn into complex systems with distinct or even contradictory
goals. The Operations Research studies the TP in the initial stage itself to
minimize transportation costs from sources to different destination. TPAC has
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primarily focused on problems with crisp data and there is a need to develop an
efficient algorithm. In this paper, we reduced the T2FS into a T1FS by using
a CVRM and CM to obtain the corresponding crisp value for the reduced fuzzy
set and under the GA approach, the optimum solution for TPAC is achieved.

2. Literature review

The basic TP was initially developed by Hitchcock [8] and then independently
progressed by Koopmans [13]. Different researchers have carried out several re-
search papers in different areas and different dimensions of TP, such as those
TP are [6, 24]. The commodity varies in certain characteristics according to its
source in many real-life circumstances, and the final commodity mixture reach-
ing destinations can then be expected to have known requirements. TPAC is
described by Haley [7]. Pandian and Anuradha [21] suggested a floating point
method for TPAC. Kumar et al. [14] proposed a mehar approach to solving the
dual-hesitant fuzzy TP with restrictions. Dutta and Murthy[5] studied fuzzy
TP with additional restrictions. Jana [10] introduced some applications of fuzzy
programming techniques to solve solid TPAC. Recent studies used the T2FS
of fuzzy-based membership functions to help deal with challenge uncertainties.
Because of the crisp existence of their membership function, conventional T1FS
decline to deal with uncertainties. T2FS is an extension of T1FS. T2FS was
first suggested by Zadeh, and Mendel & John [19]provide a more comprehen-
sive discussion and more adaptive approach. T2FSs membership functions are
three-dimensional and include a footprint of uncertainty; it is also the third di-
mension of T2FSs, as well as the footprint of uncertainty, that provide additional
degrees of freedom, allowing for direct modelling and handling of uncertainty.
Kundu et al.[16] proposed a fixed charge transportation problem with type-2
fuzzy variables.These approaches are not time-consuming to compute, particu-
larly for large-scale circumstances. Approximate algorithms can be used if the
problem is too complex to solve accurately. As a result, numerous heuristic
and meta-heuristic methods for solving TP were presented in the last couple of
decades [17, 2, 1]. Among them, the most effective and commonly used technique
is GA, which was first introduced by Holland[9]. GA are adaptive systems in
which an evolutionary mechanism based on natural selection seeks solutions to
problems. GA has been used extensively in industrial engineering and operations
research to solve many challenging problems of combinatorial optimization. GA
is one of the most efficient and widely available techniques of stochastic search
and optimization and has made great strides in relevant fields of study, such as
optimization of a network, multi-objective optimization. Accrued information is
exploited by a selection mechanism in GAs, whereas new search space regions
are explored by genetic operators [11], [22]. The technique for representing the
chromosome is one of the most significant factors in a GA approach. It has
been found to have a great impact on the GA’s performance and effectiveness.
Four fundamental steps are mostly used in GAs: initialization, selection process,
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crossover, and mutation. Recently, Kumar et al.[15] developed a real-coded GA
approach to the compromised near-optimal solution for the MOTP. Jose and
Vijayalakshmi[12] suggested the design and analysis of multi-objective optimiza-
tion problem using evolutionary algorithms. In congested urban areas, șerban
[25] proposed using evolutionary algorithms to optimise public transportation
scheduling. Misevičius et al.[20] devised hybrid genetic hierarchical algorithm
for the quadratic assignment problem. Lin and Feng-Tse [18] suggested GAs are
used to solve the TP using fuzzy coefficients. Das et al.[3] solved solid TP with
mixed constraint in different environment that is GA and LINGO software and
compared resultant solution.
The remaining part of the paper is sorted out as follows: Preliminaries are dis-
cussed in section 3 to review some basic concepts of T2FS, as well as some
relevant definitions and methods of de-fuzzification for a triangular type-2 fuzzy
variable. The formulation of the mathematical model is presented in section 4.
Section 5 explains the pseudocode for the proposed GAA solution for type 2
fuzzy TPAC. The proposed method is demonstrated with a numerical illustra-
tion in section 6. We compare our latest contribution to other existing program
solver in section 7. Finally, in section 8, we present a conclusion to our new
approach as well as an outlook for future study.

3. Preliminaries

The basic concepts of T2FS, regular fuzzy variable (RFV) and their critical
values(CVs) can be found in [16, 26, 4]. The definition of CVs of triangular RFVs,
reduction methods, and defuzzification process are covered in this section.

3.1. Critical values of triangular RFVs. The following theorem introduces
the CVs of triangular RFVs.

Theorem 3.1 (Qin et al. [23]). Let β̃ = (θ1, θ2, θ3) be a triangular RFV. Then
we have,

(1) The optimistic CV of β̃ is OCV [β̃] =
θ3

1 + θ3 − θ2

(2) The pessimistic CV of β̃ is PCV [β̃] =
θ2

1 + θ2 − θ1

(3) The CV of β̃ is CV [β̃] =


2θ2 − θ1

1 + 2(θ2 − θ1)
, if θ2 >

1

2
θ3

1 + 2(θ3 − θ2)
, if θ2 ≤ 1

2

3.2. CV-based reduction method for type-2 fuzzy variable. The mem-
bership function in T2FS is itself a fuzzy set. So, in the calculations, the com-
plexity rises. The T1FS associated methods cannot be directly applied to the
T2FSs. Therefore, a general suggestion is to reduce the T2FS complexity by
converting to a T1FS in order to adapt the methods for dealing with the con-
verted T1FS. In order to defuzzify a T2FS, different researchers have developed



936 T.K. Buvaneshwari and D. Anuradha

several techniques to defuzzify a T2FS. The CVRM was recently used by Men-
dal and John [19] to reduce a T2FS to a T1FS. In this approach the three
CVs, namely, optimistic CV(OCV [β̃]), pessimistic CV(PCV [β̃]), CV reduction
(CV [β̃]) are mainly used to obtain a type-1 fuzzy variable (T1FV ) from a type-2
fuzzy variable (T2FV ).

3.3. Defuzzification process. There are two stages in the defuzzification
process of a T2FV . In the first stage a T2FV is converted into its T1FV and the
second stage the crisp value is obtained using defuzzification techniques. In this
article we obtain a reduced T1FV from T2FV using CVRM. Later, we apply

CM (
n∑
i=1

yiµβ(yi)

n∑
i=1

µβ(yi)
for discrete case and

∫
yiµβ(yi)∫
µβ(yi)

for continuous case) to acquire a

crisp value from the T1FV .
Nomenclature
m number of Workplaces
n number of Pharmaceutical intermediaries
c̃ij cost per unit of fuzzy transportation from workplaces i to pharmaceutical
intermediaries j
t̃qi fuzzy units of r temperature q =1,2,...,r are contained in each unit of the
product, when it is directed from i to j
g̃qj fuzzy units of temperature q, maximum Celsius requirements.
ãi fuzzy supply available at work places i
b̃j fuzzy demand requirement at pharmaceutical intermediaries j
Variables
x̃ij fuzzy quantity shipped from workplaces i to pharmaceutical
intermediaries j

4. Model formulation and statement of the problem

(P ) MinimizeZ̃ =

m∑
i=1

n∑
j=1

c̃ij x̃ij (1)

Subject to the constraint (2)
n∑
j=1

x̃ij = ãi, i = 1, 2, ...,m (3)

m∑
i=1

x̃ij = b̃j , j = 1, 2, ..., n (4)

m∑
i=1

t̃qi x̃ij ≤ g̃qj , i = 1, 2, ...,m, j = 1, 2, ..., n, q = 1, 2, ..., r (5)

x̃ij ≥ 0, i = 1, 2, ...,m, j = 1, 2, ..., n (6)
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In problem (P), objective function (1) minimizes the total fuzzy transporta-
tion cost involving the additional constraint(AC). Fuzzy supply constraint (2)
ensures that the quantity shipped out from a workplace is equal to the available
capacity. Fuzzy demand constraint (3) ensures that the total shipment received
from a workplace is equal to the demand at each intermediates. Fuzzy additional
constraint (4) ensures products with tiunits of temperature are acquired which
has no more than gj units of maximum Celsius to the intermediates. Constraint
(5) ensures the non-negativity of decision variables.

5. Proposed GA Approach

We construct the crisp equivalent problem from the given problem (P) by
using CVRM and centroid method [26]. Then the problem (P) split into OCV,
PCV, CV and solve these problem using proposed GA model. The GA algorithm
starts by creating an initial random population, which is subject to three generic
procedures that are repeated multiple times (generations). Every individual in
the population is evaluated in the first procedure, based on the results a group
of children from the present generation is selected to form the new generation of
the population in the second procedure. The GA algorithm then launches a new
cycle from the first procedure by joining the parents and newly generated chil-
dren to form a new generation of the population. The proposed GA is detailed
in the simple and self-explanatory pseudocode that follows.

5.1. Initialization. A chromosome is often used to represent the encrypted
solution. The initial set of solutions, that is population size of k, is created at
random, with k/2 being an even number, letting the maximum range of possible
solutions to be explored. Using ACs, all impossible allotment cells are identified
and removed from the problem (P). All possible feasible solutions are obtained
and an initial n-chromosome population is constructed.

5.1.1. Pseudocode of the function initialize the population:
procedure start

Input → crisp equivalent problem
Remove → impossible allotment cells (ti > gj)
Generate → all the chromosomes (feasible solutions) in the feasible

region as initial population
for → Initial population size times

if → the chromosome is selected, which satisfies the AC
{
t1x11 + t2x21 + t3x31 + . . . ≤ g1
t1x12 + t2x22 + t3x32 + . . . ≤ g2
...
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t1x1j + t2x2j + t3x3j + . . . ≤ gj
}

then → move the AC satisfied chromosomes to the
Evaluation process

procedure end

5.2. Evaluation. As the overall transportation costs, including parameter and
ACs, should be reduced in this problem. The results with minimum objective
functions are better solutions. In the problem, evaluate each chromosome’s fit-
ness value using AC. The chromosome with minimum fitness value is considered
as the best chromosome.

5.2.1. Pseudocode of the function Evaluation:
procedure start

for → AC satisfied chromosomes (Ci)
Generate → each chromosome’s fitness value
Eval (Ci) = objective function value (Mi)

procedure end

5.3. Selection process. The roulette wheel selection method [20] is introduced
in the selection process, wherein the chromosomes with higher fitness values have
more chance of selection. To compute the fittest probability, we use the following
formulas,

The fittest values of each chromosome are (7)

Fi =
1

1 +Mi
(8)

The total of the fittest values of all the chromosome are (9)

Total(T ) =

m∑
i=1

Fi (10)

The probability for each chromosome are formulated by (11)

Pi =
Fi∑m
i=1 Fi

(12)

The selection procedure is based on the roulette wheel selection procedure,
as described in the following pseudocode.
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5.3.1. Pseudocode of the Selection:
procedure start

Input → Mi

Find →Fi, T =
∑m
i=1 Fi

then → probability for each chromosome i
Pi= Fi∑m

i=1 Fi

Push → Ci chromosomes to crossover and mutation
procedure end

5.4. Crossover. Irrespective of fitness, every single individual in the mating
has an equal chance of being a parent. Two parent chromosomes are selected for
mating pool. Crossover occurs between these two parents. The crossover points
locus is generated at random. Select a pair of parents at random for mating and
applying crossover to form two offsprings. A parent is chosen for a single mo-
ment of mating. For example, two-point crossover between Parent1 and Parent
2 as shown below.

parent1
2 2 0 3 2 0 0 1 5

parent2
1 3 0 2 2 1 2 0 4

The values between the chosen crossover points are now interchanged, but the
rest of the values remain the same. So there’s Offspring 1 and Offspring 2 are
given below.

Offspring 1
2 2 0 2 2 1 0 1 5

Offspring 2
1 3 0 3 2 0 2 0 4

5.4.1. Pseudocode of the Crossover:
procedure start

for → all Ci, parents
Select → the chromosome with probability Pi, which has max1

and max 2
Generate → two-point crossover between (Ci) with max1

and max2 probabilities (Pi)
Print → Resultant off spring Oiand Oi+1

Generate → fitness value of the offspring
Push → Resultant offspring Oij and O(i+1)

if → all the Offspring are processed, then
Go to → next step(Mutation)

Else → go to select the chromosomes with probability Pi, which has
next max 1 and max 2

procedure end

5.5. Mutation. The mutation operator is a vital mechanism in any effective
GA because it reorganizes the gene structure so that the algorithm can search in
the best local region. It can be considered a basic local search technique as well.
Apply the mutation operator to the offspring, and place the resulting offspring
with their parents in the new population.
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For illustration, it is to Swap mutation for previous example Offspring 1 and
Offspring 2.

Offspring 1
2 2 0 2 2 1 0 1 5

Offspring 2
1 3 0 3 2 0 2 0 4

Here we swap the two alleles 2,1 & 2,0 then we get the Offspring 3 & Offspring 4.

Offspring 3
2 2 0 2 2 0 0 1 5

Offspring 4
1 3 0 3 2 1 2 0 4

5.5.1. Pseudocode of the Mutation:
procedure start

for → Oi, Oi+1 resultant offspring of crossover
Swap → mutation between Oi and Oi+1

Print → new offspring Oij and O(i+1)j

Generate → fitness of the new offspring
Push → Resultant new offspring Oij and O(i+1)j to new population
if → all the Offspring are processed, then
Go to → next step(Termination)

Else → go to select for next set of resulting offspring of crossover
procedure end

5.6. Termination. When the highest fitness value achieved so far does not increase
in subsequent generations, we stop generating new generations. The chromosome with
the highest fitness overall generations is chosen as the TPAC’s solution.

5.6.1. Pseudocode of the Termination:
procedure start

Replace → the chromosomes of latest population with the new
population’s chromosome.

Repeat → Selection, crossover and mutation for mating of all the parents
to get best chromosomes from all the new population’s
offspring, which satisfy the AC.

Stop→ No improvement of minimum value attained so far, in successive
generation.

Else Print → The best chromosome
procedure end
The GA approach for solving a TPAC is shown below using an illustration.

6. Numerical Example

A pharmaceutical firm, the medicine manufacturing unit, has numerous types of
medicine units in each of the three workplaces (WPi) located in different parts of the
country. Workplaces obtain a fixed quantity of medication (PIj) with three distinct
pharmaceutical intermediators. The fundamental objective is to evaluate the cost
of transportation while meeting the additional requirement that, for the most part,
almost all pharmaceutical products need to be kept at a certain temperature during
the time of transportation from origin to destination. The following table 1 shows the
availabilities, temperatures, requirement, maximum Celsius requirements and cost of
transportation is given as triangular type-2 fuzzy numbers.
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Table 1. Crisp values of type-2 fuzzy unit transportation cost
for TPAC (P).

˜c11 =


2 with µ ˜c11(2) = (0.3, 0.4, 0.8)
4 with µ ˜c11(4) = (0.4, 0.7, 0.9)
6 with µ ˜c11(6) = (0.2, 0.4, 0.6)

 ˜c12 =


1 with µ ˜c12(1) = (0.3, 0.4, 0.8)
3 with µ ˜c12(3) = (0.2, 0.7, 0.9)
5 with µ ˜c12(5) = (0.3, 0.7, 0.9)


˜c13 =


1 with µ ˜c13(1) = (0.3, 0.4, 0.8)
2 with µ ˜c13(2) = (0.6, 0.7, 0.9)
3 with µ ˜c13(3) = (0.4, 0.7, 0.8)

 ˜c21 =


2 with µ ˜c21(2) = (0.6, 0.7, 0.9)
3 with µ ˜c21(3) = (0.4, 0.7, 0.8)
7 with µ ˜c21(7) = (0.2, 0.7, 0.8)


˜c22 =


3 with µ ˜c22(3) = (0.4, 0.6, 0.9)
6 with µ ˜c22(6) = (0.2, 0.7, 0.9)
9 with µ ˜c22(9) = (0.1, 0.5, 0.8)

 ˜c23 =


5 with µ ˜c23(5) = (0.1, 0.5, 0.7)
7 with µ ˜c23(7) = (0.1, 0.4, 0.5)
9 with µ ˜c23(9) = (0.7, 0.8, 0.9)


˜c31 =


5 with µ ˜c31(5) = (0.1, 0.7, 0.9)
6 with µ ˜c31(6) = (0.2, 0.4, 0.6)

10 with µ ˜c31(10) = (0.2, 0.8, 1.0)

 ˜c32 =


2 with µ ˜c32(2) = (0.6, 0.7, 0.9)
4 with µ ˜c32(4) = (0.3, 0.4, 0.7)
6 with µ ˜c32(6) = (0.2, 0.7, 0.9)


˜c33 =


3 with µ ˜c33(3) = (0.4, 0.7, 0.8)
7 with µ ˜c33(7) = (0.2, 0.7, 0.8)
8 with µ ˜c33(8) = (0.3, 0.8, 0.9)

 ã1 =


2 with µã1(2) = (0.6, 0.7, 0.9)
4 with µã1(4) = (0.3, 0.4, 0.7)
6 with µã1(6) = (0.2, 0.7, 0.9)


ã2 =


3 with µã2(3) = (0.4, 0.6, 0.8)
5 with µã2(5) = (0.4, 0.4, 0.6)
7 with µã2(7) = (0.3, 0.6, 0.8)

 ã3 =


3 with µã3(3) = (0.4, 0.5, 0.6)
6 with µã3(6) = (0.2, 0.7, 0.8)
8 with µã3(8) = (0.3, 0.8, 0.9)


t̃1 =


1 with µt̃1

(1) = (0.3, 0.6, 1.0)
2 with µt̃1

(2) = (0.5, 0.6, 1.0)
3 with µt̃1

(3) = (0.4, 0.7, 0.9)

 t̃2 =


0 with µt̃2

(0) = (0.3, 0.6, 0.8)
1 with µt̃2

(1) = (0.5, 0.6, 0.7)
2 with µt̃2

(2) = (0.4, 0.7, 0.9)


t̃3 =


0 with µt̃3

(0) = (0, 0, 0)
0 with µt̃3

(0) = (0, 0, 0)
0 with µt̃3

(0) = (0, 0, 0)

 b̃1 =


3 with µb̃1

(3) = (0.4, 0.4, 0.9)

5 with µb̃1
(5) = (0.4, 0.4, 0.6)

7 with µb̃1
(7) = (0.3, 0.6, 0.6)


b̃2 =


3 with µb̃2

(3) = (0.4, 0.6, 0.9)

5 with µb̃2
(5) = (0.4, 0.4, 0.6)

7 with µb̃2
(7) = (0.3, 0.6, 0.6)

 b̃3 =


3 with µb̃3

(3) = (0.4, 0.4, 0.9)

5 with µb̃3
(5) = (0.4, 0.4, 0.6)

7 with µb̃3
(7) = (0.3, 0.6, 0.6)


g̃1 =


2 with µg̃1(2) = (0.6, 0.7, 0.9)
4 with µg̃1(4) = (0.3, 0.4, 0.7)
6 with µg̃1(6) = (0.2, 0.7, 0.9)

 g̃2 =


0 with µg̃2(0) = (0.3, 0.6, 0.8)
1 with µg̃2(1) = (0.5, 0.6, 0.7)
2 with µg̃2(2) = (0.4, 0.7, 0.9)


g̃3 =


7 with µg̃3(7) = (0.1, 0.1, 0.2)
8 with µg̃3(8) = (0.2, 0.5, 0.6)

11 with µg̃3(11) = (0.4, 0.4, 0.5)
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Since problem(P) in type-2 fuzzy number, it is defuzzified using proposed method
by Sobana and Anuradha [26]. The conversion of triangular type-2 fuzzy numbers into
crisp form are shown in Table 2.

Table 2. Crisp values of type-2 fuzzy unit transportation cost
for TPAC.

OCV PCV
PI1 PI2 PI3 ai ti PI1 PI2 PI3 ai ti

WP1 3.92 3.17 2.08 4 2 3.95 3.21 2.11 3.8 2
WP2 3.98 5.89 7.25 5 1 3.75 5.68 7.53 4.9 1
WP3 7.24 4 6.08 6 0 7.23 3.77 5.95 5.8 0
bj 5 5 5 5.1 5.1 5.2
gj 4 1 9 3.8 1 9.2

CV
PI1 PI2 PI3 ai ti

WP1 4.02 3.24 2.13 3.92 2.04
WP2 4.02 5.87 7.3 4.99 1.04
WP3 7.11 3.92 6.05 5.89 0
bj 5.23 5.23 5.21
gj 3.92 1.04 9.1

The following step is to eliminate the allotments that are impossible to fulfill the
AC. Analyze the condition that pharmaceutical intermediates j acquire no more than
gj units of temperature-controlled products with maximum temperature restrictions.
The TPAC has been reduced by removing the impossible allotment cells using AC. In
Table 2, impossible allotment cell value in OCV is 3.17,CV is 3.21 and CV is 3.24.
Now, we remove the impossible allotment cell value and compute the feasible solution
by using existing method. The feasible allocations of OCV is x11 = 0,x12 = 0,x13 =
4,x21 = 5,x22 = 0,x23 = 0,x31 = 0,x32 = 5,x33 = 1 . It is termed as (0 0 4 5 0 0 0 5 1)
and the objective values is 54.3. The initialization is performed with feasible allocation
of OCV. A chromosome is a feasible solution and evaluation of the chromosome is an
objective function in the TP. Gene of the chromosome is a component part (xij) of the
TP. Length of each chromosome in this problem is 9. An initial population of size 8 is
randomly generated from the feasible region. Let the initial population chromosomes
be C1= (0 0 4 5 0 0 0 5 1), C2= (4 0 0 1 0 4 0 5 1), C3= (0 4 0 4 1 0 1 0 5), C4= (2
2 0 3 2 0 0 1 5), C5= (1 3 0 2 2 1 2 0 4), C6= (0 0 4 4 1 0 1 4 1), C7= (0 0 4 4 0 1
1 5 0), C8= (0 0 4 1 4 0 4 1 1) for OCV without considering any AC. Checking j=1
the AC (4), on the first chromosome C1 of the OCV problem is not satisfied, whereas
j=2,3, AC is satisfied. As a result, C1 does not satisfy the AC and discarded from
the initial population. In general, discard any chromosome that fails to satisfy all of
the ACs, such as products with ti units of temperature which has no more than gj
units of maximum Celsius to the pharmaceutical intermediates. Repeat the process for
the remaining chromosomes of OCV. Table 3 shows the satisfaction of ACs for each
chromosome of OCV.
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Table 3. Satisfaction table of the chromosomes of OCV.

Chromosomes Satisfaction
C1 NO
C2 NO
C3 NO
C4 NO
C5 NO
C6 YES
C7 YES
C8 NO

Table 3, demonstrates that chromosomes C6 and C7 satisfy all further restrictions,
and we get the objective function values of OCV as M6 =59.45 and M7=58.73. The
next procedure makes the process of the roulette wheel selection. To compute fittest
probability, we must compute the fittest of each chromosome. The fittest values and
total values in equation (6) and (7) are calculated for the satisfied chromosomes C6

and C7 . To avoid the divide by zero problem in the calculation of fittest values, the
objective value of C6 and C7 is increased by 1. The fittest chromosomes with higher
probability are selected for further processing. The probability for each chromosome is
formulated by using (8), which is P1 = 0.497 and P2 =0.503. Select the higher proba-
bility chromosomes and mate them. In this problem, only 2 chromosomes are available
for mating. In the chosen parents, C6 and C7, a random cut point is performed to
exchange the gene, using two-point crossover, as below

C6 0 0 4 4 1 0 1 4 1 C7 0 0 4 4 0 1 1 5 0

The values between the chosen crossover points are now interchanged, but the rest
of the values remain the same. The resulting offspring are

O1 0 0 4 4 0 1 1 4 1 O2 0 0 4 4 1 0 1 5 0

The objective values of the resultant offsprings are O1=60.81, O2= 57.37. Mutation
is a genetic operator that is used to maintain genetic diversity in a population of ge-
netic algorithm chromosomes from one generation to the next. A mutation changes
the value of one or more genes in a chromosome from its original state,when we use
swap mutation to obtain a viable solution. To swap the gene, we perform a random
cut point on O1 and O2, and the results are as follows.

O1 0 0 4 4 0 1 1 4 1 O2 0 0 4 4 1 0 1 5 0

The values between the chosen mutation points are now interchanged, but the rest
of the values remain the same. The following are the resultant offsprings

O11 0 0 4 4 1 0 1 4 1 O21 0 0 4 4 0 1 1 5 0
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The objective values of the resultant offspring are O11 =59.45, O21= 58.73. Replace
the best chromosome arrived so far to the new population. Each new population
needs chromosomes to satisfy all the constraints. Repeat the proposed process for the
next generation of population. When there is no improvement of the minimum value
attained so far it stops creating new generation. The objective value of a chromosome
in each generation should be minimum. Here, the offspring O21= (0 0 4 4 0 1 1 5
0) is evaluated as minimum objective value. Therefore, an optimal solution to the
given problem OCV is calculated as x13 = 4,x21 = 4,x23 = 1,x31 = 1,x32 = 5 and
the minimum transportation cost as 58.73. Repeat this process for PCV and CV. We
observed near optimal solution for OCV, PCV and CV with minimum costs are shown
in below Table 4.

Table 4. The solution to the problem (P)obtained from the
proposed GAA model.

Proposed
GA method OCV PCV CV

Near optimal
allocations

x13 = 4,x21 = 4,
x23 = 1,x31 = 1,

x32 = 5

x13 = 3.8,x21 = 3.8,
x23 = 1.1,x31 = 0.4,
x32 = 5.1,x33 = 0.3,

x41 = 0.9

x13 = 3.92,x21 = 3.77,
x22 = 0.16,x23 = 1.06,
x31 = 0.59,x32 = 5.07,
x33 = 0.23,x41 = 0.87

Minimum cost 58.73 56.12 57.844

7. Discussion

We study the same problem for different generation using genetic algorithm solver
of MATLAB and run on a PC with an Intel Core i3 −2.60 GHz and 4 GB of RAM as
the implementation environment.
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The resultant transportation cost value is nearer to our proposed method as shown
in the Figure 1,2 and 3.

For the (OCV, PCV, CV) problem, the curve of the best values acquired in 100 to
200 generations. The dotted lines lead to variation between the best and mean fitness
levels. After 20 generations, the curve is stabilised. As a result, the best fitness value
is (59.4186, 56.3775, 59.1982), while the average value is (59.6082, 56.3789, 59.1982),
which is nearer to our proposed GA model objective values. In addition, the proposed
method is compared to Lingo 10.0 software, produce the almost the same minimum
objective value. The results of the proposed GA model were compared to the GA tool
and lingo software, as shown in table 5.

Table 5. Comparison on results obtained using GA and LINGO.

Model Proposed GA GA tool(Matlab) Lingo software
OCV 58.73 59.4186 58.73
PCV 56.12 56.3775 56.12
CV 57.844 59.1982 57.65

Based on these analyses in Table 5, the decision maker (DM) can select the OCV,
PCV, and CV based on the situation of the objective function. We can be concluded
that the proposed method is the best for solving similar type of TPAC decision-making
optimization problem.

8. Conclusions and Future work

The TPAC is an important network optimization problem. This paper views the
cost, supply, demand, and ACs as T2FV s to describe the ambiguity in the realistic
decision environment. To provide a modelling context for optimization problems with
multi-fold uncertainty, CVRM is used to transform a type-2 into a T1FV and CV-based
reduction method and centroid method used to transform a T1FV to crisp variable for
OCV, PCV, and CV problems. It is easy to understand the proposed method used in
this article. We have numerical tests to assess how simple it is to execute the suggested
method and solution. The approach is the same as compared to Lingo 10.0 software
and GA Tool. Using type-2 fuzzy parameters, the proposed approach in this paper
can be extended to decision-making problems in different areas. The knowledge in the
paper can be utilized to solve specific problems in the areas of manufacturing, supply
chain systems, communications technology and so on, because the TP can be seen as
a resource allocation problem. We believe it will be useful to investigate the efficiency
of a genetic algorithm in the future, specifically its impact on the population size,
dimensions, crossover, and mutation rates on the final solution and the use of various
methods of selection (Tournament, ranking system, etc.).



946 T.K. Buvaneshwari and D. Anuradha

References

1. M.A. Albadr, S. Tiun, M. Ayob, F. AL-Dhief, Genetic Algorithm Based on Natural Selection
Theory for Optimization Problems, Symmetry 12 (2020), 1758.

2. J. Chen, P. Gui, T. Ding, S. Na, Y. Zhou, Optimization of transportation routing problem
for fresh food by improved ant colony algorithm based on tabu search, Sustain 11 (2019),
6584.

3. A. Das, U.K. Bera, B. Das, A solid transportation problem with mixed constraint in different
environment, Journal of Applied Analysis and Computation 6 (2016), 179-95.

4. A. Das, U.K. Bera, M. Maiti, Defuzzification of trapezoidal type-2 fuzzy variables and its
application to solid transportation problem, J. Intell. Fuzzy Syst. 30 (2016), 2431–2445.

5. D. Dutta, A.S. Murthy, Fuzzy transportation problem with additional restrictions, ARPN
J. Eng. Appl. Sci. 5 (2010), 36–40.

6. K.B. Hale, New Methods in Mathematical Programming—The Solid Transportation Prob-
lem, Oper. Res. 10 (1962), 448–463.

7. K.B. Haley, A.J. Smith, Transportation Problems with Additional Restrictions, J. R. Stat.
Soc. Ser. C (Applied Stat). 15 (1966), 116–127.

8. F.L. Hitchcock, The Distribution of a Product from Several Sources to Numerous Localities,
J. Math. Phys. 20 (1941), 224–230.

9. J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence, U Michigan Press, 1992.

10. S.H. Jana, B. Jana, Application of fuzzy programming techniques to solve solid transporta-
tion problem with additional constraints, Oper. Res. Decis. 30 (2020), 67–84.

11. K. Jebari, M. Madiafi, Selection Methods for Genetic Algorithms, International Journal of
Emerging Sciences 3 (2013), 333–344.

12. S. Jose, C. Vijayalakshmi, Design and Analysis of Multi-Objective Optimization Problem
Using Evolutionary Algorithms, Procedia Computer Science 172 (2020), 896-899.

13. B.O. Koopman, The optimum distribution of effort, J. Oper. Res. soceity Am. 1 (1953),
52–63.

14. A. Kumar, S.S. Appadoo, P. Kaur, Mehar approach for solving dual-hesitant fuzzy trans-
portation problem with restrictions, Sadhana-Acad. Proc. Eng. Sci. 45 (2020), 1–9.

15. R. Kumar, R. Gupta, O. Karthiyayini, R.S. Kuntal, G.A. Vatsala, Fuzzified Multi-Objective
Transportation Problem :A Real Coded Genetic Algorithm approach to the Compromised
near-to-Optimal solution, International Conference on Advanced Technologies in Intelligent
Control, Environment, Computing and Communication Engineering, (2019), 80-84.

16. P. Kundu, S. Kar, M. Maiti, Fixed charge transportation problem with type-2 fuzzy vari-
ables, Inf. Sci. (Ny). 255 (2014), 170–186.

17. I. Kucukoqlu, N. Ozturk, Simulated Annealing Approach for Transportation Problem of
Cross-docking Network Design, Procedia-Soc. Behav. Sci. 109 (2014), 1180–1184.

18. Lin, Feng-Tse, Solving the transportation problem with fuzzy coefficients using genetic
algorithms, 2009 IEEE international conference on fuzzy systems, (2009), 1468-1473.

19. J. Mendel, R. John, Type-2 fuzzy sets made easy, IEEE Trans. fuzzy Syst. 10 (2002),
117–127.

20. Misevicius, Alfonsas and Dovile Verene, A Hybrid Genetic-Hierarchical Algorithm for the
Quadratic Assignment Problem, Entropy 23 (2021), 108.

21. P. Pandian, D. Anuradha, Floating Point Method for Solving Transportation Problems
with Additional Constraints, International Mathematical Forum 6 (2011), 1983–1992.

22. T. Pasa, The genetic algorithm for solving the non-linear transportation problem, Rev.
Air Force Acad. 16 (2018), 37–44.

23. R. Qin, Y.K. Liu, Z.Q. Liu, Methods of critical value reduction for type-2 fuzzy variables
and their applications, J. Comput. Appl. Math. 235 (2011), 1454–1481.

24. Saul I. Gass, On Solving the Transportation Problem, Journal of the Operational Research
Society 41 (1990), 291–297.



Fuzzy Transportation Problem with Additional Constraint in Different Environments 947

25. A. Serban, The use of the genetic algorithms for optimizing public transport schedules
in congested urban areas, IOP Conference Series: Materials Science and Engineering 1037
(2021), 012062.

26. V.E. Sobana, D. Anuradha, Multi-objective Unbalanced Solid Assignment Problem with
Triangular Type-2 Fuzzy Parameter, Journal of Xi’an University of Architecture & Tech-
nology 12 (2020), 4518–4527.

T.K. Buvaneshwari received M.Sc. from Thiruvalluvar University and pursuing a Ph.D. at
Vellore Institute of Technology, Vellore. Her research interest includes Operations Research,
Fuzzy optimization, and Genetic algorithm.
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore, Tamil Nadu, India.
e-mail: buvisparkle@gmail.com

D. Anuradha received M.Phil. from Bharathidasan University, and a Ph.D. from Vellore
Institute of Technology, Vellore. She is currently a Senior grade Assistant professor in Math-
ematics at Vellore Institute of Technology, Vellore. Her research interests are Operations
Research, Fuzzy optimization, and Genetic algorithm.
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore, Tamil Nadu, India.
e-mail: anuradhadhanapal1981@gmail.com




