• Title/Summary/Keyword: two-phase fluid

Search Result 660, Processing Time 0.028 seconds

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

Two-Phase Flow Analysis in Multi-Channel

  • Ha Man-Yeong;Kim Cheol-Hwan;Jung Yong-Won;Heo Seong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.840-848
    • /
    • 2006
  • We carried out numerical studies to investigate the single- and two-phase flow characteristics in the single- and multi-channels. We used the finite volume method to solve the mass and momentum conservation equations. The volume of fluid model is used to predict the two-phase flow in the channel. We obtained the distribution of velocity fields, pressure drop and air volume fraction for different water mass flow rates. We also calculated the distribution of mass flow rates in the multi-channels to understand how the flow is distributed in the channels. The calculated results for the single- and two-phase flow are partly compared with the present experimental data both qualitatively and quantitatively, showing relatively good agreement between them. The numerical scheme used in this study predicts well the characteristics of single-and two-phase flow in a multi-channel.

Progress of the cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.221-224
    • /
    • 2009
  • Since the coupling of cavitation modeling with turbulent flow is the difficulty topic, a numerical simulation for two phase flow remains as one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around conical body combined with cavitation model suggested by Kunz et al. with k-e turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. The calculation results show very good agreement with experimental observations. Also, the calculation of cavitation in cryogenic fluid is being done by implementing the temperature sensitivity in government equations and it is still in the progress. This code have been being further extended to 3D compressible two phase flow for the study on the fluid dynamics around inducers and impellers in turbo pump system.

  • PDF

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

Free Vibration Analysis of Two Circular Plates Coupled with Bounded Fluid (갇힌 유체로 연성된 두 원판의 고유진동 해석)

  • 정경훈;박근배;장문희;정명조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.213-219
    • /
    • 2001
  • This paper deals with the free vibration of two identical circular plates coupled with a bounded fluid. An analytical method based on the [mite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. In the theory, it is assumed that the ideal fluid is filled in a rigid cylindrical container and the two plates are clamped along the plate edges. The proposed method is verified by the finite element analysis using commercial software with a good accuracy. Two transverse vibration modes, namely in-phase and out-of-phase, are observed alternately in the fluid-coupled system when the number of nodal circles increases for the fixed nodal diameter. The effect of gap between the plates on the fluid-coupled natural frequency is also investigated.

  • PDF

Natural Frequency of Two Rectangular Plates Coupled with Fluid (유체로 연성된 두 사각평판의 고유진동수)

  • Jeong, Kyeong-Hoon;Park, Keun-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.908-913
    • /
    • 2002
  • An analytical study is presented on the hydroelastic vibration of two rectangular identical plates coupled with a bounded fluid by using the finite Fourier series expansion method. It is observed that the two contrastive modes, the so called the out-of-phase and in-phase modes appear. The proposed analytical method is verified by observing a good agreement to three dimensional finite element analysis results. All natural frequency of the in-phase modes can be predicted well by the combination of the dry beam modes. The theoretical prediction for the out-of-phase mode can be improved by using the polynomial functions satisfying the plate boundary conditions and fluid volume conservation instead of using dry beam modes.

  • PDF

A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields (난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

Two-fluid equations for two-phase flows in moving systems

  • Kim, Byoung Jae;Kim, Myung Ho;Lee, Seung Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1504-1513
    • /
    • 2019
  • Recently, ocean nuclear reactors have received attention due to enhanced safety features. The movable and transportable characteristics distinguish ocean nuclear reactors from land-based nuclear reactors. Therefore, for safety/design analysis of the ocean reactor, the thermos-hydraulics must be investigated in the moving system. However, there are no studies reporting the general two-fluid equations that can be used for multi-dimensional simulations of two-phase flows in moving systems. This study is to systematically formulate the multi-dimensional two-fluid equations in the non-inertial frame of reference. To demonstrate the applicability of the formulated equations, we perform a total of six different simulations in 2D tanks with translational and/or rotational motions.

TWO-PHASE WAVE PROPAGATIONS PREDICTED BY HLL SCHEME WITH INTERFACIAL FRICTION TERMS (계면마찰항을 고려한 이상유동에서 파동전파에 대한 수치적 연구)

  • Yeom, G.S.;Chang, K.S.;Chung, M.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.115-119
    • /
    • 2009
  • We numerically investigated propagation of various waves in the two-phase flows such as sound wave, shock wave, rarefaction wave, and contact discontinuity in terms of pressure, void fraction, velocity and density of the two phases. The waves have been generated by a hydrodynamic shock tube, a pair of symmetric impulsive expansion, impulsive pressure and impulsive void waves. The six compressible two-fluid two-phase conservation laws with interfacial friction terms have been solved in two fractional steps. The first PDE Operator is solved by the HLL scheme and the second Source Operator by the semi-implicit stiff ODE solver. In the HLL scheme, the fastest wave speeds were estimated by the analytic eigenvalues of an approximate Jacobian matrix. We have discussed how the interfacial friction terms affect the wave structures in the numerical solution.

  • PDF