DOI QR코드

DOI QR Code

Two-fluid equations for two-phase flows in moving systems

  • Kim, Byoung Jae (School of Mechanical Engineering, Chungnam National University) ;
  • Kim, Myung Ho (School of Mechanical Engineering, Chungnam National University) ;
  • Lee, Seung Wook (Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Kyung Doo (Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute)
  • Received : 2019.02.06
  • Accepted : 2019.04.30
  • Published : 2019.09.25

Abstract

Recently, ocean nuclear reactors have received attention due to enhanced safety features. The movable and transportable characteristics distinguish ocean nuclear reactors from land-based nuclear reactors. Therefore, for safety/design analysis of the ocean reactor, the thermos-hydraulics must be investigated in the moving system. However, there are no studies reporting the general two-fluid equations that can be used for multi-dimensional simulations of two-phase flows in moving systems. This study is to systematically formulate the multi-dimensional two-fluid equations in the non-inertial frame of reference. To demonstrate the applicability of the formulated equations, we perform a total of six different simulations in 2D tanks with translational and/or rotational motions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Buongiorno, J. Jurewicz, M. Golay, N. Todreas, The offshore floating nuclear plant concept, Nucl. Technol. 194 (2016) 1-14. https://doi.org/10.13182/NT15-49
  2. K. Lee, K.-H. Lee, J.I. Lee, Y.H. Jeong, P.-S. Lee, A new design concept for offshore nuclear power plants with enhanced safety features, Nucl. Eng. Des. 254 (2013) 129-141. https://doi.org/10.1016/j.nucengdes.2012.09.011
  3. K. Shirvan, R. Ballinger, J. Buongiorno, C. Forsberg, M. Kazimi, N. Todreas, Technology selection for offshore underwater small modular reactors, Nucl. Eng. Technol. 48 (2016) 1303-1314. https://doi.org/10.1016/j.net.2016.06.002
  4. Y.G. Chen, K. Djidjeli, W.G. Price, Numerical simulation of liquid sloshing phenomena in partially filled containers, Comput. Fluids 38 (2009) 830-842. https://doi.org/10.1016/j.compfluid.2008.09.003
  5. W. Chung-Yueh, T. Jyh-tong, H.G, P.G, Numerical simulation of sloshing motion inside a two dimensional rectangular tank by level set method, Int. J. Numer. Methods Heat Fluid Flow 21 (2011) 5-31. https://doi.org/10.1108/09615531111095049
  6. R. Elahi, M. Passandideh-Fard, A. Javanshir, Simulation of liquid sloshing in 2d containers using the volume of fluid method, Ocean. Eng. 96 (2015) 226-244. https://doi.org/10.1016/j.oceaneng.2014.12.022
  7. D. Liu, P. Lin, A numerical study of three-dimensional liquid sloshing in tanks, J. Comput. Phys. 227 (2008) 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  8. L. Lu, S.-c. Jiang, M. Zhao, G.-q. Tang, Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions, Ocean. Eng. 108 (2015) 662-677. https://doi.org/10.1016/j.oceaneng.2015.08.060
  9. A.E.P. Veldman, J. Gerrits, R. Luppes, J.A. Helder, J.P.B. Vreeburg, The numerical simulation of liquid sloshing on board spacecraft, J. Comput. Phys. 224 (2007) 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
  10. D.A. Drew, Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech. 15 (1983) 261-291. https://doi.org/10.1146/annurev.fl.15.010183.001401
  11. M. Ishii, Thermo-Fluid Dynamic Theory of Two-phase Flow, Eyrolles, Paris, France, 1975.
  12. D.Z. Zhang, A. Prosperetti, Ensemble phase-averaged equations for bubbly flows, Phys. Fluids 6 (1994) 2956-2970. https://doi.org/10.1063/1.868122
  13. J. Hao, W. Chen, Z. Chen, The development of natural circulation operation support program for ship nuclear power machinery, Ann. Nucl. Energy 50 (2012) 199-205. https://doi.org/10.1016/j.anucene.2012.08.005
  14. I. Ishida, T. Kusunoki, H. Murata, T. Yokomura, M. Kobayashi, H. Nariai, Thermal-hydraulic behavior of a marine reactor during oscillations, Nucl. Eng. Des. 120 (1990) 213-225. https://doi.org/10.1016/0029-5493(90)90374-7
  15. G.L. Mesina, D.L. Aumiller, F.X. Buschman, M.R. Kyle, Modeling moving systems with relap5-3d, Nucl. Sci. Eng. 182 (2016) 83-95. https://doi.org/10.13182/NSE15-3
  16. B.H. Yan, L. Yu, Theoretical Research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions, Ann. Nucl. Energy 36 (2009) 733-741. https://doi.org/10.1016/j.anucene.2009.02.005
  17. B.H. Yan, L. Yu, The development and validation of a thermal hydraulic code in rolling motion, Ann. Nucl. Energy 38 (2011) 1728-1736. https://doi.org/10.1016/j.anucene.2011.04.007
  18. B.H. Yan, L. Yu, The experimental and theoretical analysis of a natural circulation system in rolling motion, Prog. Nucl. Energy 54 (2012) 123-131. https://doi.org/10.1016/j.pnucene.2011.07.005
  19. M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-phase Flow, 2nd, Springer, New York, USA, 2011.
  20. L. Schiller, Z. Naumann, A drag coefficient correlation, Z. Ver. Deutsch. Ing. 77 (1935) 318-320.
  21. T. Nakayama, K. Washizu, The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems, Int. J. Numer. Methods Eng. 17 (1981) 1631-1646. https://doi.org/10.1002/nme.1620171105
  22. A. Prosperetti, Averaged equations for multiphase flow, in: A. Prosperetti (Ed.), Computational Methods for Multiphase Flow, Cambridge University Press, Yew York, USA, 2007, pp. 237-281.