• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.024 seconds

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.907-911
    • /
    • 2002
  • Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Development of a method for modeling arbitrarily shaped body (복합형상 모델링 기법의 개발)

  • 이강수;이건우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.567-572
    • /
    • 1988
  • As an efficient way of modeling bodies of complicated shapes, the sweeping and skinning operations have been implemented. These two operations are very powerful modeling method when the body is defined by the cross sections at various locations. For the implementation, the data structure for storing the cross sections and the resulting three dimensional body has been constructed. The resulting object is defined by the boundary representation based on the non-uniform nonperiodic B-spline surface.

  • PDF

Shape-based Interpolation Algorithm of CT Image (CT영상의 형태에 의한 보간 알고리즘)

  • 유선국;김원기
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.71-74
    • /
    • 1990
  • In the medical modalities, three-dimensional objects must be reconstructed from the consecutive slices. but the slime separation is usually much greater than the pixel size within an individual slices. In this paper, an interpolation scheme for filling the spare between the shapes in two successive slices is developed. It minimizes the computation involvement in segmentation of 3-D reconst ructlon process as well as more accurately approximates the object than the linear interpolation method.

  • PDF

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Alexandrov S.;Kang T.J.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

Free Vibrations of Circular Uniform Strips Resting on Two Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 원호형 등단면 띠기초의 자유진동)

  • Lee, Jong-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.125-134
    • /
    • 2009
  • This paper deals with the free vibrations of circular strip foundations which have uniform solid rectangular cross-section. The ground which supports circular strips was modeled as the two parameter elastic foundation. Differential equations governing the flexural-torsional free vibrations of circular strips supported by such foundation were derived, and solved numerically for obtaining the natural frequencies and mode shapes. Boundary condition of free-free ends was considered for numerical examples. Four lowest natural frequencies according to the variations of five system parameters i.e. subtended angle, depth ratio, contact ratio, elasticity ratio and soil parameter are reported in the non-dimensional forms. Also, typical mode shapes of both deformations and stress resultants are presented in the figures. Experiment was conducted for validating the theory developed in this study.

A Comparative Study of the Houses of Mies van der Rohe and Le Corbusier (미이스 반 데르 로에 주택과 르 꼬르뷔제 주택의 비교 연구)

  • 김용립
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2004
  • There are probably no architects of the 20th Century who had more influence on modern architecture than Mies van der Rohe and Le Corbusier. Although the two architects share one thing in common, namely, both are master of modernism, each has developed unique architecture of his own. The objective of this study is to investigate the characteristics of their works through a comparison analysis of the Ideas, design principles and architectural language reflected in the works, focusing on the houses. this study will also aim to provide a foundation for a new design that harmonizes the design principles and architectural language of the two. Through the study the following common points and differences were found between the houses of the two. A) Common points: Both architects avoided ornamentation In houses while placing weight on the functions of houses and they tried to plan rational floor plans by separating the wall from the structure. B) Differences: \circled1 The houses of Mies express the structure in a straight forward manner, while those of Corbusier are formative houses focusing more on shapes. \circled2 The shapes of the houses of Mies are limited to basic shapes, quadrangle while those of Corbusier employ various geometric curves. \circled3 Using steel and glass, the houses of Mies are light and transparent. On the contrary, using concrete, the houses of Corbusier are somewhat bulky with Three-dimensional changes. \circled4 The houses of Mies show the value of moderation based upon the classical principles of design, while the houses of Corbusier show the value of moderation based upon geometry. \circled5 The houses of Mies feature horizontal intoners with flexibility. However, Corbusier's houses have vertical interiors with some changes in the cross sections. \circled6 In terms of material, the interiors of Mies' houses employ materials with various tones and textures, while interiors of Corbusier's houses are painted in simple white. Summing up these characteristics, it could be said that the houses of Mies have logical and rational beauty, whereas the houses of Corbusier have more emotional beauty.