• Title/Summary/Keyword: two-dimensional gel

Search Result 277, Processing Time 0.026 seconds

1H, 15N and 13C Backbone Assignments and Secondary Structures of C-ter100 Domain of Vibrio Extracellular Metalloprotease Derived from Vibrio vulnificus

  • Yun, Ji-Hye;Kim, Hee-Youn;Park, Jung-Eun;Cheong, Hae-Kap;Cheong, Chae-Joon;Lee, Jung-Sup;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3248-3252
    • /
    • 2012
  • Vibrio extracellular metalloprotease (vEP), secreted from Vibrio vulnificus, shows various proteolytic function such as prothrombin activation and fibrinolytic activities. Premature form of vEP has an N-terminal (nPP) and a C-terminal (C-ter100) region. The nPP and C-ter100 regions are autocleaved for the matured metalloprotease activity. It has been proposed that two regions play a key role in regulating enzymatic activity of vEP. Especially, C-ter100 has a regulatory function on proteolytic activity of vEP. C-ter100 domain has been cloned into the E. coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using gel-filtration chromatography followed by affinity chromatography. To understand how C-ter100 modulates proteolytic activity of vEP, structural studies were performed by heteronuclar multi-dimensional NMR spectroscopy. Backbone $^1H$, $^{15}N$ and $^{13}C$ resonances were assigned by data from standard triple resonance and HCCH-TOCSY experiments. The secondary structures of vEP C-ter100 were determined by TALOS+ and CSI software based on hydrogen/deuterium exchange. NMR data show that C-ter100 of vEP forms a ${\beta}$-barrel structure consisting of eight ${\beta}$-strands.

A Simple Method for Detection of Trypsin Inhibitors in Soybean (Glycine max) (대두 Trypsin Inhibitor의 간이검정법)

  • Jo, Ku-Hyung;Lee, Chun-Yung;Hong, Jong-Uek;Kim, In-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.339-344
    • /
    • 1986
  • The specific reaction of trypsin inhibitors with trypsin to form stable complexes was successfully applied for detection of trypsin inhibitors in soybean. Soybean extract was treated with $Ca^{++}$ to remove globulin fraction, followed by digestion with trypsin and fractionated by chromatography on Sephadex G-50. The void volume fraction contained the trypsin-trypsin inhibitor complexes as well as trypsin. The trypsin inhibitors were then detected by their molecular weight differences on SDS-polyacrylamide gel electrophoresis, in which the complexes dissociate into trypsin and its inhibitors. With the method proposed, trypsin inhibitors were indentified by their ability forming the stable complexes with trypsin and their anti-tryptic moiety. The formation of the complexes with trypsin was further confirmed by two dimensional electrophoresis and DEAE-Sephadex A-25 chromatography. Employing the proposed method, it was found that soybean (Glycine max cv. Hill) contained 7 trypsin inhibitors.

  • PDF

Relative Analysis between Fertility and Protein Changes in Semen of Different Species in Pigs (돼지 품종간 정액 내에서 수정 능력과 단백질 변화와의 관계 분석)

  • Lee, Yeon-Ju;Lee, Sang-Hee;Kim, Yu-Jin;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • The objective of this study was to investigate the relationship between fertility and protein pattern change using in vitro fertilization, analysis of sperm characteristics and two-dimensional gel electrophoresis in different pig types. In results, the viability and mitochondria integrity of sperm were higher significantly (p<0.05) but the portions of acrosome reaction was lower significantly (p<0.05) in Duroc and $F_1$ (potbellied ${\times}$ PWG miniature pig) than PWG miniature. On in vitro fertilization to investigate fertility, the fertility of $F_1$ semen war higher significantly (p<0.05) than in Duroc and PWG miniature pig. On the other hand, protein patterns showed similar function among the different boar semen. Especially, the heat shock 70 kDa 1-like and G patch domain-containing protein 4 were significantly (p<0.05) higher expressed in $F_1$ than in Duroc and PWG miniature pig. The proteins associated with mitochondria in Duroc were significantly (p<0.05) higher expressed than in $F_1$ and PWG miniature pig. The developmental rates to blastocyst stage of oocytes fertilized with sperm of $F_1$ pig were significantly (p<0.05) higher than in PWG miniature pig. However, phosphoglycerate kinase 2 and zinc finger protein 431 were significantly (p<0.05) higher expressed in PWG miniature pig than in $F_1$ and Duroc pigs. In conclusion, the results of the present study indicate that different proteins were expressed in different pig types, and were associated with a sperm functions and embryo development.

Proteome Analysis of Paenibacillus polymyxa E681 Affected by Barley

  • Seul, Keyung-Jo;Park, Seung-Hwan;Ryu, Choong-Min;Lee, Yong-Hyun;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.934-944
    • /
    • 2007
  • Paenibacillus polymyxa E681 is known to be able to suppress plant diseases by producing antimicrobial compounds and to promote plant growth by producing phytohormones, and secreting diverse degrading enzymes. In spite of these capabilities, little is known regarding the flow of information from the bacterial strain to the barley roots. In an attempt to determine the flow of information from the bacterial strain to barley roots, the strain was grown in the presence and absence of barley, and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and MALDI-TOF mass spectrometry were used. 2D-PAGE detected approximately 1,000 spots in the cell and 1,100 spots in the supernatant at a pH 4-10 gradient. Interestingly, about 80 spots from each sample showed quantitative variations. Fifty-three spots from these were analyzed by MALDI-TOF mass spectrometry and 28 proteins were identified. Most of the cytosolic proteins expressed at higher levels were found in P. polymyxa E681 cells grown in the presence of barley rather than in the absence of barley. Proteins detected at a lower level in the surpernatant of P. polymyxa E68l cells grown in the presence of barley were lipoprotein, glucose-6-phosphate 1-dehydrogenase, heat-shock protein HtpG, spermidine synthase, OrfZ, ribonuclease PH, and coenzyme PQQ synthesis protein, and flagellar hook-associated protein 2 whereas proteins detected at a higher level in the surpernatant of P. polymyxa E681 cells grown in the presence of barley included D-alanyl-D-alanine ligase A, isopentenyl-diphosphate delta-isomerase, ABC transporter ATP-binding protein Uup, lipase. Many of the proteins belonging to plant-induced stimulons are associated with biosynthetic metabolism and metabolites of proteins and transport. Some of these proteins would be expected to be induced by environmental changes resulting from the accumulation of plant-secreted substances.

Proteomic Analysis of Recombinant Saccharomyces cerevisiae upon Iron Deficiency Induced via Human H-Ferritin Production

  • Seo, Hyang-Yim;Chang, Yu-Jung;Chung, Yun-Jo;Kim, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1368-1376
    • /
    • 2008
  • In our previous study, the expression of active H-ferritins in Saccharomyces cerevisiae was found to reduce cell growth and reactive oxygen species (ROS) generation upon exposure to oxidative stress; such expression enhanced that of high-affinity iron transport genes (FET3 and FTR1). The results suggested that the recombinant cells expressing H-ferritins induced cytosolic iron depletion. The present study analyzes metabolic changes under these circumstances via proteomic methods. The YGH2 yeast strain expressing A-ferritin, the YGH2-KG (E62K and H65G) mutant strain, and the YGT control strain were used. Comparative proteomic analysis showed that the synthesis of 34 proteins was at least stimulated in YGH2, whereas the other 37 proteins were repressed. Among these, the 31 major protein spots were analyzed via nano-LC/MS/MS. The increased proteins included major heat-shock proteins and proteins related to endoplasmic reticulum-associated degradation (ERAD). On the other hand, the proteins involved with folate metabolism, purine and methionine biosynthesis, and translation were reduced. In addition, we analyzed the insoluble protein fractions and identified the fragments of Idh1p and Pgk1p, as well as several ribosomal assembly-related proteins. This suggests that intracellular iron depletion induces imperfect translation of proteins. Although the proteins identified above result from changes in iron metabolism (i.e., iron deficiency), definitive evidence for iron-related proteins remains insufficient. Nevertheless, this study is the first to present a molecular model for iron deficiency, and the results may provide valuable information on the regulatory network of iron metabolism.

Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant

  • Xia, Xiaoshuang;Li, Huan;Liu, Fei;Zhang, Ye;Zhang, Qi;Wang, Yun;Li, Peiwu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.624-632
    • /
    • 2017
  • Penicillium expansum causes blue mold rot, a prevalent postharvest disease of pome fruit, and is also the main producer of the patulin. However, knowledge on the molecular mechanisms involved in this pathogen-host interaction remains largely unknown. In this work, a two-dimensional gel electrophoresis-based proteomic approach was applied to probe changes in P. expansum 3.3703 cultivated in apple juice medium, which was used to mimic the in planta condition. The results showed that the pH value and reducing sugar content in the apple juice medium decreased whereas the patulin content increased with the growing of P. expansum. A total of 28 protein spots that were up-regulated in P. expansum when grown in apple juice medium were identified. Functional categorization revealed that the identified proteins were mainly related to carbohydrate metabolism, secondary metabolism, protein biosynthesis or degradation, and redox homeostasis. Remarkably, several induced proteins, including glucose dehydrogenase, galactose oxidase, and FAD-binding monooxygenase, which might be responsible for the observed medium acidification and patulin production, were also detected. Overall, the experimental results provide a comprehensive interpretation of the physiological and proteomic responses of P. expansum to the host plant environment, and future functional characterization of the identified proteins will deepen our understanding of fungi-host interactions.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

Genes of Rhodobacter sphaeroides 2.4.1 Regulated by Innate Quorum-Sensing Signal, 7,8-cis-N-(Tetradecenoyl) Homoserine Lactone

  • Hwang, Won;Lee, Ko-Eun;Lee, Jeong-Kug;Park, Byoung-Chul;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.219-227
    • /
    • 2008
  • The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorum-sensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of ${\beta}$-gal activities upon the addition of synthetic 7,8-cis-N-tetradecenoyl-homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of ${\beta}$-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.

Cellular Responses of Salmonella typhimurium Exposed to Green Tea Polyphenols (녹차폴리페놀에 노출된 Salmonella typhimurium의 세포반응)

  • Choi, Hyo-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • The purpose of this study was to examine the cellular response of Salmonella typhimurium exposed to tea polyphenols (TPP) extracted from Korean green tea (Camellia sinensis L.). TPP showed a dose-dependent bactericidal effect on S. typhimurium. Analysis of cell membrane fatty acids of S. typhimurium cultures treated with TPP identified unique changes in saturated and unsaturated fatty acids, while scanning electron microscopic analysis demonstrated the presence of perforations and irregular rod forms with wrinkled surfaces in cells treated with TPP. Two-dimensional polyacrylamide gel electrophoresis of soluble protein fractions from S. typhimurium cultures showed 16 protein spots increased by TPP. These up-regulated proteins including proteins involved in antioxidants and chaperons, transcript and binding proteins, energy and DNA metabolism were identified by peptide mass fingerprinting using MALDI-TOF. These results provide clues for understanding the mechanism of TPP induced stress and cytotoxicity on S. typhimurium.

Keratin 17 identified by proteomic analysis may be involved in tumor angiogenesis

  • Xu, Yong;Zhang, Su-Zhen;Huang, Can-Hua;Liu, Xin-Yu;Zhong, Zhen-Hua;Hou, Wen-Li;Su, Zi-Fen;Wei, Yu-Quan
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.344-349
    • /
    • 2009
  • Angiogenesis is crucial for solid tumor growth. By secreting angiogenic factors, tumor cells induce angiogenesis. However, targeting these angiogenic factors for cancer therapy is not always successful, suggesting that other factors may be involved in tumor angiogenesis. This work shows that 25 protein spots were differentially expressed by two-dimensional gel electrophoretic analysis when HepG2 cells induced endothelial cell differentiation to tube in vitro, and most of them were upregulated. Twenty-one proteins were identified with MALDITOF-MS, and the other four were identified by LTQ-MS/MS. Keratins were identified as one class of these upregulated proteins. Further study indicated that the expression of keratin 17 in cultured endothelial cells is likely microenvironment regulated, because its expression can be induced by HepG2 cells and bFGF as well as serum in culture media. Increased expression of keratins in endothelial cells, such as keratin 17, may contribute to the angiogenesis induced by HepG2 cells.