• Title/Summary/Keyword: turbulent natural convection

Search Result 61, Processing Time 0.024 seconds

Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel (플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석)

  • Choi, In-Su;Park, Byung-Duck;Seo, Joo-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF

The Effects of Top and Bottom Lids on the Natural Convection Heat Transfer inside Vertical Cylinders (수직 원형관 내부에서 발생하는 자연대류 열전달에서 상·하단 마개의 영향)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.242-251
    • /
    • 2011
  • The effects of top and bottom lids on the natural convection heat transfer phenomena inside vertical cylinders were investigated experimentally for $Ra_{Lw}$ from $9.26{\times}10^9$ to $7.74{\times}10^{12}$. Using the concept of analogy between heat and mass transfer, a cupric acid-copper sulfate electroplating system was employed as mass transfer experiments replacing heat transfer experiments. The natural convection heat transfer of both-open cylinders in laminar and turbulent flows was in good agreement with the existing heat transfer correlations developed for vertical plates. The effects of top and bottom lids on the heat transfer rates were very similar to the studies of Krysa et al. and Sedahmed et al. and Chung et al. With the copper lids, the bottom-closed cavity showed the highest heat transfer rates and then followed both-closed, top-closed, both-open ones in both laminar and turbulent flows. However with the acryl lids, the similar trends were observed except that the heat transfer rates for both-open were higher than top-closed one. The use of the copper lids increased the heat transfer rates compared to the acryl lids due to the hydrodynamic interaction of the flows developed for the different heated faces. This study extended the ranges of flow conditions of the existing literatures and proposed the empirical correlations.

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

Parallel Finite Element Simulation of the Incompressible Navier-stokes Equations (병렬 유한요소 해석기법을 이용한 유동장 해석)

  • Choi H. G.;Kim B. J.;Kang S. W.;Yoo J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.8-15
    • /
    • 2002
  • For the large scale computation of turbulent flows around an arbitrarily shaped body, a parallel LES (large eddy simulation) code has been recently developed in which domain decomposition method is adopted. METIS and MPI (message Passing interface) libraries are used for domain partitioning and data communication between processors, respectively. For unsteady computation of the incompressible Wavier-Stokes equation, 4-step splitting finite element algorithm [1] is adopted and Smagorinsky or dynamic LES model can be chosen fur the modeling of small eddies in turbulent flows. For the validation and performance-estimation of the parallel code, a three-dimensional laminar flow generated by natural convection inside a cube has been solved. Then, we have solved the turbulent flow around MIRA (Motor Industry Research Association) model at $Re = 2.6\times10^6$, which is based on the model height and inlet free stream velocity, using 32 processors on IBM SMP cluster and compared with the existing experiment.

  • PDF

A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure (개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구)

  • Park, Chan-Kuk;Chu, Byeong-Gil;Kim, Cheol
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN THE COVER GAS REGION OF SODIUM-COOLED FAST REACTOR (소듐냉각 고속로의 커버가스 영역에서 열유동 해석)

  • Lee, Tae-Ho;Kim, Seong-O;Hahn, Do-Hee
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 2008
  • The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.

Field Measurements and CFD Simulations of Indoor Thermal Environments in the Assembly Hall (대형 강의실의 실내 열환경 실측 및 컴퓨터시뮬레이션 비교 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • The evaluation of the indoor environment of the Assembly Hall in the University, which is designed to be a large space, requires efficient design of its heating system that takes into consideration natural convection and the characteristics of the occupant's spaces. Indoor thermal environment was measured in the field and simulated with CFD code. The estimations of temperature distribution and indoor airflow distribution must be carried out simultaneously, as the thermal stratification is induced by natural convection flows. In order to simulate the even distribution of factors affecting the indoor environment, including temperature and airflow, Phoenics is used. The turbulent flow model adopted is the RNG k- model. The inlets and outlets of the air-conditioning systems, material and thermal properties, and the size of the test room ($35m{\times}18m{\times}10m$) are used for the simulation. Since the Assembly Hall is symmetric, half of the space is simulated. A Cartesian grid is used for calculation and the number of grids are respectively $60{\times}45{\times}35$. The results of the computer simulation during winter conditions are compared with the measurements at the typical points in the assembly hall with the heating system. After evaluating the results of the computer simulations, the methods of the heating system and layout are suggested.

Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders (엇갈리게 배열된 두 개의 수평관에서 수평 피치-직경비에 따른 자연대류 열전달 영향)

  • Chae, Myeong-Seon;Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • This study measured the natural-convection heat transfer of two vertically staggered cylinders with varying vertical pitch-to-diameter ($P_v$/D) and horizontal pitch-to-diameter ($P_h$/D) ratios. The measured heat-transfer rates for the lower cylinder agreed well with the existing heat-transfer correlations for a single cylinder. At the smallest $P_v$/D, the rising plume from the lower cylinder provides the upper cylinder with a preheated flow, and the heat-transfer rates of the upper cylinder decrease, but increase very sensitively with $P_h$/D. However, at the largest $P_v$/D, the velocity effect dominates, and the heat-transfer rates of the upper cylinder are larger than that of a single cylinder, and decrease less sensitively with $P_h$/D. Even if $P_h$/D is increased, the heat-transfer rate of the upper cylinder is higher than that of the lower cylinder because of the chimney and side flow effects. This work expanded the flow ranges to turbulent flows. The cupric acid-copper sulfate ($H_2SO_4-CuSO_4$) electroplating system was adopted for the measurements of the mass-transfer rates instead of the heat-transfer experiments based on the analogy concept. The measurements were made by varying $P_v$/D (1.02-5) and $P_h$/D (0-2) in both laminar and turbulent flows. The Rayleigh number ranged from $1.5{\times}10^8$ to $2.5{\times}10^{10}$, and the Prandtl number was 2,014.