DOI QR코드

DOI QR Code

Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders

엇갈리게 배열된 두 개의 수평관에서 수평 피치-직경비에 따른 자연대류 열전달 영향

  • Chae, Myeong-Seon (Dept. of Energy Engineering, Institute for Nuclear Science and Engineering, Jeju Nat'l Univ.) ;
  • Heo, Jeong-Hwan (Dept. of Energy Engineering, Institute for Nuclear Science and Engineering, Jeju Nat'l Univ.) ;
  • Chung, Bum-Jin (Dept. of Energy Engineering, Institute for Nuclear Science and Engineering, Jeju Nat'l Univ.)
  • 채명선 (제주대학교 에너지공학과) ;
  • 허정환 (제주대학교 에너지공학과) ;
  • 정범진 (제주대학교 에너지공학과)
  • Received : 2011.08.11
  • Accepted : 2012.02.03
  • Published : 2012.03.01

Abstract

This study measured the natural-convection heat transfer of two vertically staggered cylinders with varying vertical pitch-to-diameter ($P_v$/D) and horizontal pitch-to-diameter ($P_h$/D) ratios. The measured heat-transfer rates for the lower cylinder agreed well with the existing heat-transfer correlations for a single cylinder. At the smallest $P_v$/D, the rising plume from the lower cylinder provides the upper cylinder with a preheated flow, and the heat-transfer rates of the upper cylinder decrease, but increase very sensitively with $P_h$/D. However, at the largest $P_v$/D, the velocity effect dominates, and the heat-transfer rates of the upper cylinder are larger than that of a single cylinder, and decrease less sensitively with $P_h$/D. Even if $P_h$/D is increased, the heat-transfer rate of the upper cylinder is higher than that of the lower cylinder because of the chimney and side flow effects. This work expanded the flow ranges to turbulent flows. The cupric acid-copper sulfate ($H_2SO_4-CuSO_4$) electroplating system was adopted for the measurements of the mass-transfer rates instead of the heat-transfer experiments based on the analogy concept. The measurements were made by varying $P_v$/D (1.02-5) and $P_h$/D (0-2) in both laminar and turbulent flows. The Rayleigh number ranged from $1.5{\times}10^8$ to $2.5{\times}10^{10}$, and the Prandtl number was 2,014.

엇갈리게 배열된 두 개의 수평관의 수직 이격거리($P_v$/D)와 수평 이격거리($P_h$/D)를 변화시키며 자연대류 열전달을 실험적으로 측정하였다. 열/물질전달의 상사성을 이용하여 물질전달 실험을 수행하였고 난류영역까지 확장하였다. Pr 수 2,014, RaD 수 $1.5{\times}10^8\sim2.5{\times}10^{10}$, $P_v$/D는 1.02~5, $P_h$/D는 0~2 범위에서 수행하였다. 하단 수평관의 물질전달은 단일 수평관 상관식의 예측치와 일치하였다. 상단 수평관의 물질전달은 $P_v$/D가 작을 때, 하단 수평관에서 상승하는 플룸의 예열영향(Preheating effect)으로 인해 감소하였고, $P_h$/D가 증가하면 급격히 상승하였다. 그러나 $P_v$/D가 클 때, 상단 수평관의 물질전달은 하단 수평관의 플룸 속도영향으로 인하여 단일 수평관보다 컸고, $P_h$/D가 증가함에 따라 완만하게 감소하였다. $P_h$/D가 매우 증가하여도 굴뚝효과(Chimney effect)와 측면유동효과(Side flow effect) 인하여 상단 수평관의 열전달이 하단 수평관의 열전달보다 크게 나타났다.

Keywords

References

  1. Smith, A. F. J. and Wragg, A. A., 1974, "An Electrochemical Study of Mass Transfer in Free Convection at Vertical Arrays of Horizontal Cylinders," Journal of Applied Electrochemistry, Vol. 4, No. 3, pp. 219-228. https://doi.org/10.1007/BF01637231
  2. Marsters, G. F., 1972, "Arrays of Heated Horizontal Cylinders in Natural Convection," Int. J. of Heat and Mass Transfer, Vol. 15, No. 5, pp. 921-933. https://doi.org/10.1016/0017-9310(72)90231-1
  3. Sparrow, E. M. and Boessneck, D. S., 1983, "Effect of Transverse Misalignment on Natural Convection From a Pair of Parallel, Vertically Stacked, Horizontal Cylinders," J. Heat Transfer, Vol. 105, No. 2, pp. 241-247 https://doi.org/10.1115/1.3245569
  4. Yuncu, H. and Batta, A., 1994, "Effect of Vertical Separation Distance on Laminar Natural Convection Heat Transfer over Two Vertically Spaced Equitemperature Horizontal Cylinders," Applied Scientific Research, Vol. 52, pp. 259-277. https://doi.org/10.1007/BF00853953
  5. Corcione, M., 2005, "Correlating Equations for Free Convection Heat Transfer from Horizontal Isothermal Cylinders Set in a Vertical Array," Int. J. of Heat and Mass Transfer, Vol. 48, No. 17, pp. 3660-3673. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.010
  6. Sparrow, E. M. and Niethammer, J. E., 1981, "Effect of Vertical Separation Distance and Cylinder-to-Cylinder Temperature Imbalance on Natural Convection for a Pair of Horizontal Cylinders," Trans. of the ASME, Vol. 103, pp. 638-644. https://doi.org/10.1115/1.3244520
  7. Chae, M. S. and Chung, B. J., 2011, "The Effect of Pitch-to-Diameter on Natural Convection Heat Transfer of Two Vertically Aligned Horizontal Cylinders," Chemical Engineering Science, Article in Press.
  8. Sadegh, M. and Asheghi, M., 1994, "Free Convection Heat Transfer From Arrays of Vertically Separated Horizontal Cylinders at Low Rayleigh Numbers," Int. J. Heat Mass Transfer, Vol. 37, No. 1, pp. 103-109. https://doi.org/10.1016/0017-9310(94)90165-1
  9. Lieberman, J. and Gebhart, B., 1969, "Interactions in Natural Convection from an Array of Heated Elements, Experimental," Int. J. Heat Transfer, Vol. 12, No. 11, pp. 1385-1396. https://doi.org/10.1016/0017-9310(69)90023-4
  10. Corcione, M., Cianfrini, C., Habib, E. and Giudice, G. M. L., 2008, "Correlating Equations for Laminar Free Convection From Misaligned Horizaontal Cylinders in Interacting Flow Fields," J. Heat Transfer, Vol. 130, No. 5
  11. Toshiyuki, M., Koji, S. and Kenzo, K., 2003, "Fluid Flow and Heat Transfer of Natural Convection around Large Horizontal Cylinders: Experiments with Air," Heat Transfer-Asian Research, Vol. 32, No. 4, pp. 293-305. https://doi.org/10.1002/htj.10080
  12. Ko, S. H., Moon, K. W. and Chung, B. J., 2006, "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear Engineering and Technology, Vol. 38, pp. 251-258.
  13. Heo, J. H. and Chung B. J., 2011, "Visualization of Natural Convection Heat Transfer on a Horizontal Cylinder using the Copper Electroplating System," Trans. of the KSME(B), Vol. 35, No. 1, pp.43-51. https://doi.org/10.3795/KSME-B.2011.35.1.043
  14. Kitamura, K., Kami-iwa, F. and Misumi, T., 1999, "Heat Transfer and Fluid Flow of Natural Convection Around Large Horizontal Cylinders," Int. J. of Heat and Mass Transfer, Vol. 42, No. 22 pp. 4093-4106.
  15. McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York, pp. 175-177.
  16. Morgan, V. T., 1975, "The Overall Convective Heat Transfer from Smooth Circular Cylinders, in: T. F. Irvine Jr, J. P. Hartnett (Eds.)," Advance in Heat Transfer, Academic Press, New York, Vol. 11, pp. 199-210.
  17. Churchill, S. W. and Chu, H. S., 1974, "Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 18, No. 9, pp. 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7
  18. Merk, H. L. and Prins, J. A., 1954, "Thermal Convection in Laminar Boundary layers ,I ,II III," Appl. Sci. Res., Vol. 4, No. 11-24, pp. 195-206. https://doi.org/10.1007/BF03184951
  19. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N. J.
  20. Selman, J. R. and Tobias, C. W., 1978, "Mass Transfer Measurement by the Limiting Current Technique," Advances in Chemical Engineering, ELSEVIER, Vol. 10, pp. 211-318. https://doi.org/10.1016/S0065-2377(08)60134-9
  21. Kang, K. U. and Chung, B. J., 2010, "The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments in a Vertical Pipe," Trans. of the KSME(B), Vol. 34, No. 1, pp. 1-8. https://doi.org/10.3795/KSME-B.2010.34.1.1
  22. Fenech, E. J. and Tobias, C. W., 1960, "Mass Transfer by Free Convection At Horizontal Electrodes," Electrochemical. Acta, Vol. 2, No. 4, pp. 311-325. https://doi.org/10.1016/0013-4686(60)80027-8
  23. Kim, W. S., Talbot, C., Chung, B. J. and Jackson, J. D., 2002, "Variable Property, Mixed Convection, Heat Transfer to Air Flowing in a Vertical Passage of Annular Cross Section : Part 1," ChERD in UK (Chemical Engineering Research and Design), Vol. 80, No. 3, pp. 239-245.