• Title/Summary/Keyword: tunnelling

Search Result 1,979, Processing Time 0.026 seconds

DEM numerical study for the effect of scraper direction on shield TBM excavation in soil (개별요소법을 이용한 스크래퍼 비트방향이 토사지반에서의 쉴드 TBM 굴진에 끼치는 영향 연구)

  • Lee, Gi-Jun;Kim, Huntae;Kwon, Tae-Hyuk;Cho, Gye-Chun;Kang, Shin-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • In tunnel excavation by TBMs, a cutterhead, which practically excavates the ground, is an important part directly affecting net penetration rate. Most of the researches on the cutterhead design that have been carried out until now are on the cutter arrangement. It is difficult to find a study for the effect of the scraper installation direction on TBM excavation although same cutterheads except for direction of the scraper are used in Korea. Therefore, this paper shows how the direction of scraper installation affects shield-TBM excavation. Discrete element method was used to identify the effect of scraper installation direction on shield-TBM excavation. When the scraper installation direction was outward, the amount of particles per unit time flowed into the cutter head opening was smaller than when the scraper installation direction was inward, and more loads were applied to the cutterhead.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock (EPB-TBM 암반굴착시 스크류컨베이어의 배토 거동에 대한 DEM 기반 수치해석적 연구)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Huntae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Tunnel construction by TBMs should be supported by the performance of a screw conveyor in order to obtain the optimum penetration rate, so studies related to the screw conveyor performance have been being conducted. Compared to the study on the performance of the screw conveyor for the soil, however, the research on the performance of the screw conveyor for the rock is insufficient. Considering the domestic tunnel sites with more rock layers than soil layers, simulation of discharge of 6 types of rock chips by the screw conveyor was conducted using DEM. Regardless of the shape and volume of the rock chips, the discharge rates of the rock chips by the parallel placed screw conveyor at a speed of 10 RPM in the same rock mass were about 20% (standard deviation: 1.3%) of the maximum volume of discharge rate by the screw conveyor. It is expected that this study can be used as a reference material for screw conveyor design and operation in TBM excavations in rock masses.

An analysis of excavation cycle time for Korean tunnels and the comparison with the Standard of Construction Estimate (국내터널 굴착 사이클타임에 대한 분석결과와 표준품셈과의 비교)

  • Kim, Yangkyun;Kim, Hyung-Mok;Lee, Sean S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.137-153
    • /
    • 2019
  • Estimating tunnel construction time and costs are the most fundamental part of a tunnel project planning, which has been generally assessed on a deterministic basis until now. In this paper, excavation cycle time was investigated for two road tunnels and one subway tunnel, and the results were compared with the Standard of Construction Estimate (SE), which is made for the estimation of construction time and cost in a design stage. The results show that the difference in cycle time between SE and actual cycle time is 50%, 7% and 31% respectively for the three tunnels, which means that SE does not reflect practical operation time. The major reasons of the difference are skilled level of tunneling workers, the change of operation sequences for more effective operations, much more complicated working atmosphere in a tunnel than the assumption of SE etc. Finally, even though the results can not be generalized since investigated tunnels are only 3, but it is thought that SE needs to be upgraded into the model able to consider quite common situations through additional tunnel investigation and studies in the future.

Analysis and cause of defects in reinforced cement concrete lining on NATM tunnel based on the Precise Inspection for Safety and Diagnosis - Part I (정밀안전진단 결과를 활용한 NATM (철근)의 라이닝 결함 종류별 발생원인 및 분석 - Part I)

  • Choo, Jinho;Lee, Inmo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.1-29
    • /
    • 2019
  • Related to the previous paper on the typical crack pattern of tunnel lining with NATM, the characteristic defects in reinforced cement concrete lining of NATM tunnel have analyzed with the precise inspection with safety and diagnosis (PISD) by KISTEC. Depending on the reinforcing materials, steel rebar, steel fiber, and glass fiber have been implemented to reinforcing lining in various NATM tunnel constructions. Reinforcing lining with rebar are prevailed on NATM tunnel to countermeasure the weak geological circumstances, to pursuit the economical tunnel sections, and to resist the risk of tunnel deterioration. By the special act on the safety control of public facilities, the reinforced NATM tunnels for more than 1 km length are scrutinized closely to characterize defects; crack, reinforcement exposure, and lack of lining. Crack resistance by reinforcing is shown in comparison with the normalized crack to the length of tunnel. Typical exposed reinforcements in lining have exemplified with various sections. The lack of lining due to the mal-construction, spalling, fire, earthquake and leaching has been analyzed. The cause and mechanism with the field inspections and other studies has also been verified. Detailed cases are selected by the above concerns as well as the basic information from FMS (Facilities Management System). Likewise the previous paper, this study provides specialized defects in reinforced lining of NATM and it can be widely used in spreading the essential technics and reporting skills. Furthermore, it would be advised and amended for the detail guideline of Safety Diagnosis and PISD (tunnel).

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.