• Title/Summary/Keyword: tunnel linings

Search Result 89, Processing Time 0.037 seconds

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

A Study on the Concrete Lining Behavior due to Tunnel Deterioration (터널 열화로 인한 콘크리트 라이닝의 거동에 관한 연구)

  • Han, Young-Chul;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.21-34
    • /
    • 2014
  • This paper studies the time-dependent behaviors of tunnel and surrounding ground due to tunnel deterioration. In the first part, the literature on deterioration characteristics of tunnels was reviewed. In the second part, a numerical analysis was performed to investigate the behavior of concrete lining on the typical section of Korean high-speed rail tunnel (weathered rock) after determination of input variables related to deterioration impact. The result shows that the settlement at the crown of tunnel and surface ground increased up to 7.0% and 30.2% of the total settlements during construction stage, respectively, and the internal convergence reduction of 9.0 mm for concrete linings was generated within 30 years after completion of tunnel construction. Also the loosening height increased up to 2.55 times of tunnel height within 50 years, which is higher than that of Terzaghi's recommendation on ultimate state. Due to this process of extending zones, it is found that additional loads were applied to concrete lining with the axial stress about 3.20~3.66 MPa, which accelerates tunnel deterioration. Finally the quantitative design approach to evaluate time-dependent behavior of lining and surrounding ground due to tunnel deterioration was proposed.

Heat of hydration characteristics on high-performance concrete for large dimensional tunnel linings (대단면 터널 라이닝 적용 고성능 콘크리트의 수화열 특성)

  • Min, Kyung-Hwan;Jung, Hyung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • In this study, experiments of development and application of 50 MPa high-performance concrete are performed for large dimensional tunnel linings. In order to produce 50MPa high-performance concrete, eight optimal mixtures replacing with fly ash and ground granulated blast furnace slag up to 50 percent of type I Portland cement were selected then tests for mechanical properties and simple adiabatic temperature rise tests were carried out. And in order to assess the quantitative characteristics of heat of hydrations of developed mixtures, three mixtures that the type I Portland cement (OPC) and each one mixture of binary and ternary mixtures (BS30, F15S35) were reselected, then the adiabatic temperature rise tests and mock-up tests were performed. Consequently, the comparisons between the results of mock-up tests and finite element analysis can be enhanced the reliability of analyzing routines of thermal behaviours of the developed high-performance concrete.

Effect of Leakage on Deterioration of Concrete Lining Structure (콘크리트 라이닝 구조물의 누수에 의한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Cyou;Kim, Seong-Soo;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.287-288
    • /
    • 2009
  • In this study, the degree of deterioration on the tunnel lining concrete due to crack and leakage was evaluated by field-investigating the conventional tunnels constructed a long time ago. By examining the exterior, conducting the non-destructive test and collecting cores for the tunnel concrete linings, this study evaluated the compressive strength and the permeability, and also performed instrumental analyses.

  • PDF

A study on the long-term behavior due to the hydraulic interaction between ground water and tunnel (지하수-터널 수리상호작용에 따른 터널의 장기거동 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Ahn, Sang-Ro;Park, Dong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.239-248
    • /
    • 2006
  • The interaction between ground water and structure is complicated behavior which cannot be easily investigated In the laboratory and monitored in the fields. In this study numerical simulation of the interactive behavior was performed using sophisticated coupled-finite element method. Hydraulic behavior of structure is modeled using solid elements with finite Permeability. Recovery of ground water table in the long-term is considered by controlling hydraulic boundary conditions. The results showed that the interaction effect is significant. Particularly non-symmetry in the lining permeability resulted in highly unbalanced pore water pressure which may cause detrimental effects on inner linings of tunnels acting as drains.

  • PDF

Development of Three Dimensional Groundwater Flow Program (3차원 지하수 흐름해석 프로그램 개발에 관한 연구)

  • 박준모;장연수;김홍석;이두화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.577-584
    • /
    • 2001
  • For construction and design of tunnels, groundwater flow models are used to find the influence of groundwater to the stability of tunnels considering the geological condition around the tunnels and the materials used in tunnel linings. For the analysis of tunnel flow, some commercial programs, e.g. MODFLOW, SEEP/W etc., are used. These programs have limitations that MODFLOW could not define curved surface smoothly in three dimensional flow media and SEEP/W is the 2-dimensional flow model. In this paper, the ability of a finite element program developed for analyzing 3-dimensional groundwater flow is examined. Confined steady state groundwater flow solution in non-homogeneous media is obtained using isoparametric element with eight trilinear hexahedron nodes and is compared with the result of MODFLOW. It was found that the solution yielded a good result with the three dimensional flow studied.

  • PDF

Durability Comparison of Precast Segment Lining and Cast-in-place Concrete Lining (프리캐스트 세그먼트 라이닝과 현장 타설 콘크리트 라이닝의 내구성 비교)

  • Gyuphil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.13-18
    • /
    • 2023
  • Cast-in-place concrete lining is commonly used in tunnel lining, but cast-in-place concrete lining has problems with construction and quality control. Precast segment lining is being used to solve these problems. In general, precast segment lining is known to have improved durability and easy maintenance such as rehabilitation of structures. This study compared the durability of 22 tunnel linings constructed with precast segments or cast-in-place reinforced concrete.

Void detection for tunnel lining backfill using impact-echo method based on continuous wavelet transform and convolutional neural network

  • Jiyun Lee;Kyuwon Kim;Meiyan Kang;Eun-Soo Hong;Suyoung Choi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • We propose a new method for detecting voids behind tunnel concrete linings using the impact-echo method that is based on continuous wavelet transform (CWT) and a convolutional neural network (CNN). We first collect experimental data using the impact-echo method and then convert them into time-frequency images via CWT. We provide a CNN model trained using the converted images and experimentally confirm that our proposed model is robust. Moreover, it exhibits outstanding performance in detecting backfill voids and their status.

Dynamic Behaviors of the Curved Steel Tunnel Lining due to Wind Loads by Passing Vehicles (통과차량으로 인한 풍하중에 대한 곡선 강재 터널라이닝의 동적 거동 분석)

  • Mha, Ho-Seong;Cho, Kwang-Il;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.309-320
    • /
    • 2012
  • Dynamic behaviors of the tunnel linings of curved tunnels with various curvatures are investigated to examine the effect of wind loads due to passing vehicles. In the case without backfill, the responses of the tunnel lining should be considered to examine the clearance of the lining. A steel tunnel lining is selected to see the influence of the wind load upon the tunnel lining more clearly. The wind pressure upon the lining is simplified into the pressure and suction while the vehicle passing the loading positions. As the radius of curvature decreases, the response decreases, showing that the strength against the deformation is found to increase since the asymmetry of the deformation shape is reduced. It is found that the responses increase as the passing vehicle speed increases.

Experimental and Numerical Study of Interactions Between Parallel Tunnels (평행근접터널의 상호거동에 대한 실험 및 수치해석적 연구)

  • Kim, Sang-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.181-187
    • /
    • 2003
  • This paper describes a study of the influence of shield tunnel construction on the displacements and stresses induced in the linings of existing nearby parallel tunnels. The paper presents a brief review of a set of laboratory scale model research programme investigating the influence of tunnel proximity and alignment, liner stiffness on the nature of the interactions between closely spaced tunnels in clay. A total of two sets of carefully controlled physical model tests were performed. A cylindrical test tank was developed and used to produce clay samples of Speswhite kaolin. In each of the tests, three model tunnels were installed in order to conduct two interaction exts that have been carried out to investigate the interaction problem between parallel tunnels. The results of these tests are compared with the results of finite element analysis to investigate the techniques that must be used to obtain reliable numerical solutions to this type of problem.