• Title/Summary/Keyword: tuning rule

Search Result 125, Processing Time 0.02 seconds

On the Auto-Tuning of a Discrete PID Controller Based on the Ziegler and Nichols's Method (Ziegler-Nichols 방법을 이용한 이산형 PID제어기의 자동동조)

  • 이영일;권욱현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.774-781
    • /
    • 1991
  • This paper proposes an auto-tuning method of a discrete -PIC controllers which is based on the Ziegler and Nichols's PID Tuning Rule. This tunign rule is derived using the Pade's first order approximation and it prevents the performance degradation caused by the time-delay effect of zero order holder when the Ziegler-Nichols tuning rule is applied to a discrete PID controller. A simple and practical auto-tuning method is proposed through combining this discrete tuning rule with the relay control. The auto-tuning scheme is implemented on a microprocessor based system and is applied to a position control system to show the effectiveness of the discrete tuning rule.

  • PDF

A fuzzy expert system for auto-tuning PID controllers (자기동조 PID제어기를 위한 퍼지전문가 시스템)

  • 이기상;김현철;박태건;김일우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.398-403
    • /
    • 1993
  • A rule based fuzzy expert system to self-tune PID controllers is proposed in this paper. The proposed expert system contains two rule bases, where one is responsible for "Long term tuning" and the other for "Incremental tuning". The rule for "Long term tuning" are extracted from the Wills'map and the knowledge about the implicit relations between PID gains and important long term features of the output response such as overshoot, damping and rise time, etc., while 'Incremental tuning" rules are obtained from the relations between PID gains and short term features, error and change in error. In the PID control environment, the proposed expert system operates in two phases sequentially. In the first phase, the long term tuning is performed until long term features meet their desired values approximately. Then the incremental tuning tarts with PID gains provided by the long term tuning procedure. It is noticeable that the final PID gains obtained in the incremental tuning phase are only the temporal ones. Simulation results show that the proposed rule base for "Long term tuning" provides superior control performance to that of Litt and that further improvement of control performance is obtained by the "Incremental tuning'.ance is obtained by the "Incremental tuning'.ing'.

  • PDF

On Designing A Fuzzy-Neural Network Control System Combined with Genetic Algorithm (유전알고리듬을 결합한 퍼지-신경망 제어 시스템 설계)

  • 김용호;김성현;전홍태;이홍기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1119-1126
    • /
    • 1995
  • The construction of rule-base for a nonlinear time-varying system, becomes much more complicated because of model uncertainty and parameter variations. Furthemore, FLC does not have an ability of adjusting rule- base in responding to some sudden changes of control environments. To cope with these problems, an auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), which is known to be very effective in the optimization problem, will be proposed. The tuning of the proposed system is performed by two tuning processes(the course tuning process and the fine tuning/adaptive learning process). The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Automated-Database Tuning System With Knowledge-based Reasoning Engine (지식 기반 추론 엔진을 이용한 자동화된 데이터베이스 튜닝 시스템)

  • Gang, Seung-Seok;Lee, Dong-Joo;Jeong, Ok-Ran;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06a
    • /
    • pp.17-18
    • /
    • 2007
  • 데이터베이스 튜닝은 일반적으로 데이터베이스 어플리케이션을 "좀 더 빠르게" 실행하게 하는 일련의 활동을 뜻한다[1]. 데이터베이스 관리자가 튜닝에 필요한 주먹구구식 룰(Rule of thumb)들을 모두 파악 하고 상황에 맞추어 적용하는 것은 비싼 비용과 오랜 시간을 요구한다. 그렇게 때문에 서로 다른 어플 리케이션들이 맞물려 있는 복잡한 서비스는 필수적으로 자동화된 데이터베이스 성능 관리와 튜닝을 필 요로 한다. 본 논문에서는 이를 해결하기 위하여 지식 도매인(Knowledge Domain)을 기초로 한 자동화 된 데이터베이스 튜닝 원칙(Tuning Principle)을 제시하는 시스템을 제안한다. 각각의 데이터베이스 튜닝 이론들은 지식 도매인의 지식으로 활용되며, 성능에 영향을 미치는 요소들을 개체(Object)와 콘셉트 (Concept)로 구성하고 추론 시스템을 통해 튜닝 원칙을 추론하여 쉽고 빠르게 현재 상황에 맞는 튜닝 방법론을 적용시킬 수 있다. 자동화된 데이터베이스 튜닝에 대해 여러 분야에 걸쳐 학문적인 연구가 이루어지고 있다. 그 예로써 Microsoft의 AutoAdmin Project[2], Oracle의 SQL 튜닝 아키텍처[3], COLT[4], DBA Companion[5], SQUASH[6] 등을 들 수 있다. 이러한 최적화 기법들을 각각의 기능적인 방법론에 따라 다시 분류하면 크게 Design Tuning, Logical Structure Tuning, Sentence Tuning, SQL Tuning, Server Tuning, System/Network Tuning으로 나누어 볼 수 있다. 이 중 SQL Tuning 등은 수치적으로 결정되어 이미 존재하는 정보를 이용하기 때문에 구조화된 모델로 표현하기 쉽고 사용자의 다양한 요구에 의해 변화하는 조건들을 수용하기 쉽기 때문에 이에 중점을 두고 성능 문제를 해결하는 데 초점을 맞추었다. 데이터베이스 시스템의 일련의 처리 과정에 따라 DBMS를 구성하는 개체들과 속성, 그리고 연관 관계들이 모델링된다. 데이터베이스 시스템은 Application / Query / DBMS Level의 3개 레벨에 따라 구조화되며, 본 논문에서는 개체, 속성, 연관 관계 및 데이터베이스 튜닝에 사용되는 Rule of thumb들을 분석하여 튜닝 원칙을 포함한 지식의 형태로 변환하였다. 튜닝 원칙은 데이터베이스 시스템에서 발생하는 문제를 해결할 수 있게 하는 일종의 황금률로써 지식 도매인의 바탕이 되는 사실(Fact)과 룰(Rule) 로써 표현된다. Fact는 모델링된 시스템을 지식 도매인의 하나의 지식 개체로 표현하는 방식이고, Rule 은 Fact에 기반을 두어 튜닝 원칙을 지식의 형태로 표현한 것이다. Rule은 다시 시스템 모델링을 통해 사전에 정의되는 Rule와 튜닝 원칙을 추론하기 위해 사용되는 Rule의 두 가지 타업으로 나뉘며, 대부분의 Rule은 입력되는 값에 따라 다른 솔루션을 취하게 하는 분기의 역할을 수행한다. 사용자는 제한적으로 자동 생성된 Fact와 Rule을 통해 튜닝 원칙을 추론하여 데이터베이스 시스템에 적용할 수 있으며, 요구나 필요에 따라 GUI를 통해 상황에 맞는 Fact와 Rule을 수동으로 추가할 수도 었다. 지식 도매인에서 튜닝 원칙을 추론하기 위해 JAVA 기반의 추론 엔진인 JESS가 사용된다. JESS는 스크립트 언어를 사용하는 전문가 시스템[7]으로 선언적 룰(Declarative Rule)을 이용하여 지식을 표현 하고 추론을 수행하는 추론 엔진의 한 종류이다. JESS의 지식 표현 방식은 튜닝 원칙을 쉽게 표현하고 수용할 수 있는 구조를 가지고 있으며 작은 크기와 빠른 추론 성능을 가지기 때문에 실시간으로 처리 되는 어플리케이션 튜닝에 적합하다. 지식 기반 모률의 가장 큰 역할은 주어진 데이터베이스 시스템의 모델을 통하여 필요한 새로운 지식을 생성하고 저장하는 것이다. 이를 위하여 Fact와 Rule은 지식 표현 의 기본 단위인 트리플(Triple)의 형태로 표현된다, 트리플은 Subject, Property, Object의 3가지 요소로 구성되며, 대부분의 Fact와 Rule들은 트리플의 기본 형태 또는 트리플의 조합으로 이루어진 C Condition과 Action의 두 부분의 결합으로 구성된다. 이와 같이 데이터베이스 시스템 모델의 개체들과 속성, 그리고 연관 관계들을 표현함으로써 지식들이 추론 엔진의 Fact와 Rule로 기능할 수 있다. 본 시스템에서는 이를 구현 및 실험하기 위하여 웹 기반 서버-클라이언트 시스템을 가정하였다. 서버는 Process Controller, Parser, Rule Database, JESS Reasoning Engine으로 구성 되 어 있으며, 클라이 언트는 Rule Manager Interface와 Result Viewer로 구성되어 었다. 실험을 통해 얻어지는 튜닝 원칙 적용 전후의 실행 시간 측정 등 데이터베이스 시스템 성능 척도를 비교함으로써 시스템의 효용을 판단하였으며, 실험 결과 적용 전에 비하여 튜닝 원칙을 적용한 경우 최대 1초 미만의 전처리에 따른 부하 시간 추가와 최소 약 1.5배에서 최대 약 3배까지의 처리 시간 개선을 확인하였다. 본 논문에서 제안하는 시스템은 튜닝 원칙을 자동으로 생성하고 지식 형태로 변형시킴으로써 새로운 튜닝 원칙을 파생하여 제공하고, 성능에 영향을 미치는 요소와 함께 직접 Fact과 Rule을 추가함으로써 커스터마이정된 튜닝을 수행할 수 있게 하는 장점을 가진다. 추후 쿼리 자체의 튜닝 및 인텍스 최적화 등의 프로세스 자동화와 Rule을 효율적으로 정의하고 추가하는 방법 그리고 시스템 모델링을 효과적으로 구성하는 방법에 대한 연구를 통해 본 연구를 더욱 개선시킬 수 있을 것이다.

  • PDF

A Model-Based Tuning Rule of the PID Controller (PID 제어기의 모델기반 동조규칙)

  • 김도응;신명호;권봉재;유성호;박승수;진강규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.261-266
    • /
    • 2002
  • In this Paper, we Propose model-based tuning rules of the PID controller incorporating with genetic algorithms. Three sets of optimal PID parameters for step set-point tracking are obtained based on the first-order time delay model of plants and a genetic algorithm which minimizes performance indices(IAE, ISE and ITAE). Then tuning rules are obtained using the tuned parameter sets, potential rule models and a genetic algorithm. Simulation is carried out to verify the effectiveness of the proposed rules.

  • PDF

Rule-based controller by Modified Ziegler-Nichols tuning (개선된 Ziegler-Nichols 동조에 의한 규칙기반 PID제어기 설계)

  • Lee, Won-Hyok;Choi, Jeong-Nae;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.775-777
    • /
    • 1998
  • The Ziegler-Nichols parameter tuning has been widely known as a fairly heuristic method to good determine setting of PID controllers, for a wide range of common industrial processes. We extract process knowledge required for rule base controller through tuning experiment and simulation study, such as set point weighting and normalised gain and dead time of process. In this paper, we presents a rule base PID controller by extracted process knowledge and the modified Ziegler-Nichols tuning. Computer simulation are provided demonstrate the feasibility of this approach.

  • PDF

A Fuzzy Expert System for Auto-tuning PID Controllers (PID제어기의 자동조정을 위한 퍼지 전문가시스템)

  • Lee, Kee-Sang;Kim, Hyun-Chul;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.436-438
    • /
    • 1993
  • A rule based fuzzy expert system in self-tune PID controllers is presented in this paper. The rule base. the core of the expert system, is extracted from the Wills' tuning map and the author's knowledge about the implicit relations between PID gains and controlled output response. The overall control system consists of the relay feedback scheme and the expert system, where the one is responsible for initial tuning and the other for subsequent tuning. The PID control system with the proposed fuzzy expert system, shows better convergence rate and control performances than those of a Litt in spite of the fact that the two rule bases are extracted from the same maps provided by Wills.

  • PDF

Tuning Rules of the PID Controller Using RCGAs (RCGA를 이용한 외란제거용 PID 제어기의 동조규칙)

  • Kim, Min-Jung;Lee, Yun-Hyung;So, Myung-Ok;Ha, Yun-Soo;Hwang, Sung-Wook;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.448-454
    • /
    • 2007
  • The new tuning rules of the PID controller for the rejection of load disturbance are proposed incorporating with real-coded genetic algorithms (RCGAs). The optimal gain parameters of the PID controller for a first-order plus time delay model are obtained based on a RCGA. Then tuning formula are derived using the tuned parameters sets potential tuning rule models and another RCGA. The performance criteria of the controller are adopted as ISE, IAE and ITAE. A series of simulation are carried out to verify the effectiveness of the proposed tuning rules.

Fuzzy Modeling by Genetic Algorithm and Rough Set Theory (GA와 러프집합을 이용한 퍼지 모델링)

  • Joo, Yong-Suk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.333-336
    • /
    • 2002
  • In many cases, fuzzy modeling has a defect that the design procedure cannot be theoretically justified. To overcome this difficulty, we suggest a new design method for fuzzy model by combining genetic algorithm(GA) and mush set theory. GA, which has the advantages is optimization, and rule base. However, it is some what time consuming, so are introduce rough set theory to the rule reduction procedure. As a result, the decrease of learning time and the considerable rate of rule reduction is achieved without loss of useful information. The preposed algorithm is composed of three stages; First stage is quasi-optimization of fuzzy model using GA(coarse tuning). Next the obtained rule base is reduced by rough set concept(rule reduction). Finally we perform re-optimization of the membership functions by GA(fine tuning). To check the effectiveness of the suggested algorithm, examples for time series prediction are examined.

  • PDF

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF