• Title/Summary/Keyword: tuning circuit

Search Result 212, Processing Time 0.026 seconds

Efficiency Improvement of HBT Class E Power Amplifier by Tuning-out Input Capacitance

  • Kim, Ki-Young;Kim, Ji-Hoon;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.274-280
    • /
    • 2007
  • This paper demonstrates an efficiency improvement of the class E power amplifier (PA) by tuning-out the input capacitance ($C_{IN}$) of the power HBT with a shunt inductance. In order to obtain high output power, the PA needs the large emitter size of a transistor. The larger the emitter size, the higher the parasitic capacitance. The parasitic $C_{IN}$ affects the distortion of the voltage signal at the base node and changes the duty cycle to decrease the PA's efficiency. Adopting the L-C resonance, we obtain a remarkable efficiency improvement of as much as 7%. This PA exhibits output power of 29 dBm and collector efficiency of 71% at 1.9 GHz.

Development of a Wideband EPR Spectrometer with Microstrip and Loop Antennas

  • Ponomaryov, A.N.;Choi, K.Y.;Suh, B.J.;Jang, Z.H.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.178-182
    • /
    • 2013
  • We have developed a new non-conventional electron paramagnetic resonance (EPR) spectrometer, in which no resonant cavity was used. We previously demonstrated a wide frequency range operation of an EPR spectrometer using two loop antennas, one for a microwave transmission and the other for signal detection [1]. In contrast to Ref. [1], the utilization of a microstrip antenna as a transmitter enhanced a capability of wide-band operation. The replacement of conventional capacitors with varactor diodes makes resonance condition easily reproducible without any mechanical action during tuning and matching procedure since the capacitance of the diodes is controlled electronically. The operation of the new EPR spectrometer was tested by measuring a signal of 1,1-diphenil-2-picrylhydrazyl (DPPH) sample in the frequency range of 0.8-2.5 GHz.

2.4GHZ CMOS LC VCO with Low Phase Noise

  • Qian, Cheng;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.501-503
    • /
    • 2008
  • This paper presents the design of a 2.4 GHz low phase noise fully integrated LC Voltage-Controlled-Oscillator (VCO) in $0.18{\mu}m$ CMOS technology. The VCO is without any tail bias current sources for a low phase noise and, in which differential varactors are adopted for the symmetry of the circuit. At the same time, the use of differential varactors pairs reduces the tuning range, i.e., the frequency range versus VTUNE, so that the phase noise becomes lower. The simulation results show the achieved phase noise of -138.5 dBc/Hz at 3 MHz offset, while the VCO core draws 3.9mA of current from a 1.8V supply. The tuning range is from 2.28GHz to 2.55 GHz.

  • PDF

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.55-58
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T=1.5V$, while the simulated value was 1.0GHz at $V_T=1.5V$. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

VCO fabrication using Microstrip Line operating at the UHF frequency band (UHF대역에서 동작하는 마이크로스트립라인을 이용한 VCO 제작)

  • Rhie, Dong-Hee;Jung, Jin-Hwee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.153-156
    • /
    • 2001
  • In this paper, we present the results of the design and fabrication of the VCO(Voltage controlled Oscillator) using RF circuit simulator GENESYS and electromagnetic field simulator EMpower Frequency range is fabricated VCO is 850 MHz ~ 950 MHz, which is used Colpitts Circuit. the fabricated VCO is consisted of resonator, oscillator and MSL(Microstrip Line) is used in LC tuning circuit.(operated by negative feedback) MSL(Microstrip Line), Varactor(Plastic package), low noise TR(SOT-23), chip inductor(1608), chip capacitor(1005), chip resistance(1005). 1005 type is used for sample fabrication of VCO. In the fabrication process, circuit pattern is screen printed on the alumina substrates of over 99.9% purity. Center frequency of the sample VCO is 850MHz at $V_T$=1.5V, while the simulated value was 1.0GHz at $V_T$=1.5V. Variable frequency range of the sample is 860~950MHz in contrast to the 1068~1100MHz of the simulated values.

  • PDF

Embedded RF Test Circuits: RF Power Detectors, RF Power Control Circuits, Directional Couplers, and 77-GHz Six-Port Reflectometer

  • Eisenstadt, William R.;Hur, Byul
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Modern integrated circuits (ICs) are becoming an integrated parts of analog, digital, and radio frequency (RF) circuits. Testing these RF circuits on a chip is an important task, not only for fabrication quality control but also for tuning RF circuit elements to fit multi-standard wireless systems. In this paper, RF test circuits suitable for embedded testing are introduced: RF power detectors, power control circuits, directional couplers, and six-port reflectometers. Various types of embedded RF power detectors are reviewed. The conventional approach and our approach for the RF power control circuits are compared. Also, embedded tunable active directional couplers are presented. Then, six-port reflectometers for embedded RF testing are introduced including a 77-GHz six-port reflectometer circuit in a 130 nm process. This circuit demonstrates successful calibrated reflection coefficient simulation results for 37 well distributed samples in a Smith chart. The details including the theory, calibration, circuit design techniques, and simulations of the 77-GHz six-port reflectometer are presented in this paper.

A Design Procedure of Digitally Controlled Oscillator for Power Optimization (디지털 제어 발진기의 전력소모 최적화 설계기법)

  • Lee, Doo-Chan;Kim, Kyu-Young;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.94-99
    • /
    • 2010
  • This paper presents a design procedure of digitally controlled oscillator(DCO) for power optimization. By controlling coarse tuning bits and fine tuning bits of DCO, the proposed design procedure can optimize the power dissipation and does not affect the LSB resolution, frequency range, linearity, portability. For optimization, the relationship between control bits and power dissipation of the DCO was analyzed. The DCO circuits using and unusing proposed design technique have been designed, simulated and proved using 0.13um, 1.2V CMOS library. The DCO circuit with proposed design technique has operation range between 283MHz and 1.1GHz and has 1.7ps LSB resolution and consumes 2.789mW at frequency of 1GHz.

Design and Implementation of VCO for Doppler Radar System (도플러 레이더 시스템용 VCO 설계 및 제작)

  • Kim Yong-Hwan;Kim Hyun-Jin;Min Jun-Ki;Yoo Hyung-Soo;Lee Hyung-Kyu;Hong Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.81-87
    • /
    • 2005
  • In this paper, a VCDRO(Voltage Control Dielectirc Resonator Oscillator) for signal source of doppler radar system is designed and fabricated. The proposed VCDRO is made with new tuning mechanism using CPW line. The coplanar waveguide of $\lambda_{g}$/2 in length with varactor diode is placed on the metallization side under the dielectric resonator and coupled to it. Tuning varactor diode is mounted at one end of the CPW. The proposed circuit tuned by a CPW allows one more varactor diode to be mounted on the optimized CPW, where a greater sensitivity of frequency tuning is needed. With varying the biasing voltage for the varactor diode from 0 V to 15 V, output frequency tuning of 12 MHz is obtained. The PLDRO exhibits output power of 16.5 dBm with phase noise in the phase locked state characteristic of -115 dBc/Hz at 100 Hz, -105 dBc/Hz at the 10 kHz, and -102 dBc/Hz at 1 Hz offset from 10.525 GHz , respectively.

  • PDF

A W-band Compact and Wideband VCO Using Active Inductor in 0.15-㎛ GaAs pHEMT Technology (능동 인덕터를 이용한 0.15-㎛ GaAs pHEMT 기반 W-대역 VCO 설계)

  • Dongkyo Kim
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.445-450
    • /
    • 2024
  • This paper presents a varactor-less voltage-controlled oscillator (VCO) at W-band (75-110 GHz) with a compact size in a 0.15-㎛ GaAs pHEMT technology. For varactor-less frequency tuning, an inductive tuning circuit is employed. An active inductor is realized by the common-gate stage with gate termination and shows a wide tuning range with a high quality factor (Q-factor) compared with the conventional varactor diode. Colpitts topology with source feedback is employed for the oscillation core of the VCO. The varactor-less VCO exhibits a measured tuning range of 5.8 % and peak output power of 5.7 dBm at 88 GHz while the 146 mW of dc power is dissipated. Due to compact layout design, the chip size is only 0.48 mm2.

Study on Improving the Phase Noise of Broadband Voltage-Controlled Oscillator

  • Go, Min-Ho;Kim, Hyoung-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.191-193
    • /
    • 2016
  • This paper proposes a voltage-controlled oscillator (VCO) that has broadband turning and low-level of phase noise characteristics. Due to the micro-strip line resonant circuit with a low Q value, which is applied to the broadband tuning range, the depreciated phase noise performance is compensated by restraining the harmonics of the oscillating frequency. The VCO was designed according to the proposed structure as well as the conventional structure, and the superiority of the proposed structure was verified through its simulation, fabrication, and measurement.