• 제목/요약/키워드: tubes

검색결과 3,118건 처리시간 0.027초

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • 한국지반환경공학회 논문집
    • /
    • 제22권12호
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Corrosion Property Evaluation of Copper Alloy Tubes against Sea Water

  • Pang, Beilli;Ong, Sang-Kil;Lee, Hong-Ro
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.280-286
    • /
    • 2009
  • In this study, the corrosion property of copper alloy tubes in seawater has been investigated. Three copper alloys of nominal composition Cu-20Zn-2Al(Al-Brass), Cu-30Ni(CN70/30) and Cu-10Ni(CN90/10) were considered. The samples were immersed in 3%NaCl flowing solution at $90^{\circ}C$ for 30, 50 and 80 days. Corrosion rate of copper alloy tubes in 3%NaCl flowing solution was investigated by weight-loss measurements and electrochemical test. The CN70/30 showed lowest corrosion rate among three copper alloy tubes. Because of passive films formation, corrosion rates of three types of copper tubes were decrease with time. Surface characteristics of copper alloy tubes were analyzed by optical micrograph(OM), scanning electronic microscopy (SEM), energy dispersive X-ray analysis(EDAX) and X-ray diffraction patterns(XRD). CN70/30 showed partly pitting problem on the surface owing to high Fe content, even though having high resistant against corrosion. Cracks appeared on the surface of CN90/10 and CN70/30 after more than 50 days immersion, which could be derived from high nickel contents.

Burst Behavior for Mechanically Machined Axial Flaws of Steam Generator Tubings

  • Hwang, Seong Sik;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제3권1호
    • /
    • pp.30-33
    • /
    • 2004
  • It has been reported that some events of a rupture of seam generator tube have occurred in nuclear power plants around the world. Main causes of the leakage are from various types of corrosion in the steam generator(SG) tubings. Primary water stress corrosion cracking(PWSCC) of steam generator tubings have occurred in many tubes in Korean plant, and they were repaired using sleeves or plugs, In order to develop proper repair criteria, it is necessary to ascertain the leak behavior of the tubings. A high pressure leak and burst testing system was manufactured. Various types of Electro Discharged Machined (EDM) notches were developed on the SG tubes. Leak rate and burst pressure were measured on the tubes at room temperature. Burst pressure of the part through wall defected tubes depends on the defect depth, Water flow rates after the burst were independent of the t1aw types; tubes having 20 to 60 mm long EDM notches showed similar flow rates regardless of the defect depth. A fast pressurization rate gave the tube a lower burst pressure than the case of a slow pressurization.

증기발생기 세관의 파괴저항 특성 측정에 관한 연구 (A Study on the Measurement of Fracture Resistance Characteristics for Steam Generator Tubes)

  • 장윤석;허남수;안민용;황성식;김정수;김영진
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.420-427
    • /
    • 2006
  • The structural and leakage integrity of steam generator tubes should be sustained against all postulated loads even if a crack is present. During the past three decades, most of the efforts with respect to integrity evaluation of steam generator tubes have been focused on limit load solutions but, recently, the applicability of elastic-plastic fracture mechanics was examined cautiously due to its effectiveness. The purpose of this paper is to introduce a testing method to estimate fracture resistance characteristics of steam generator tubes with a through-wall crack. Due to limited thickness and diameter, inevitably, the steam generator tubes themselves were tested instead of standard specimen or alternative ones. Also, a series of three dimensional elastic-plastic finite element analyses were carried out to derive closed-form estimation equations with respect to J-integral and crack extension for direct current potential drop method. Since the effectiveness of $J_{IC}$ as well as J-R curves was proven through comparison with those of standard specimens taken from pipes, it is believed that the proposed scheme can be utilized as an efficient tool for integrity evaluation of cracked steam generator tubes.

낮은 핀 관의 응축 열전달 성능에 관한 연구 (A Study on the Condensation Heat Transfer of Low Integral Fin Tubes)

  • 한규일;박성국
    • 수산해양기술연구
    • /
    • 제32권1호
    • /
    • pp.67-77
    • /
    • 1996
  • The heat transfer performance of R - 11 vapor condensing on integral fin tubes has been studied using fin tubes having the fin density from 748 to 1654 fins per meter. Electric heater supplied heat energy to the boiler to generate R - 11 vapor over the range of 25-60W. Condensation rates of each tubes were tested under the condition of cooling water flow rate from 400l/h to 2500l/h. For the seven fin tubes tested, the best performance has been obtained with a tube having a fin density of 1417fpm and a fin height of 1.3mm. This tube has yielded a maximum value of the heat transfer coefficient of 16500W/$m_2$K, at a vapor to wall temperature difference of 3K. Experimental results of integral fin tubes have been compared with available predictive models such as Beatty - Katz's analysis, Webb's analysis, Sukhatme's analysis and Rudy's empirical relation. The experimental results were shown to be in good agreement with that of the Sukhatme's analysis.

  • PDF

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.

Impact Collapse Characteristics of CF/Epoxy Composite Tubes for Light-Weights

  • Kim, Young-Nam;Hwang, Jae-Jung;Baek, Kyung-Yun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.48-56
    • /
    • 2003
  • This paper investigates the collapse characteristics of CF/Epoxy composite tubes subjected to axial loads as changing interlaminar number and outer ply orientation angle. The tubes are aften used for automobiles, aerospace vehicles, trains, ships, and elevators. We have performed static and dynamic impact collapse tests by a way of building impact test machine with vertical air compression. It is fanad that CF/Epoxy tube of the 6 interlaminar number (C-type) with 90$^{\circ}$ outer orientation angle and trigger absorbed more energy than the other tubes (A. B and D-types). Also collapse mode depended upon outer orientation angle of CF/Epoxy tubes and loading type as well; typical collapse modes of CF/Epoxy tubes are wedged, splayed and fragmentcl.

Deformation behaviours of SS304 tubes in pulsating hydroforming processes

  • Yang, Lianfa;Wang, Ninghua;He, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.91-110
    • /
    • 2016
  • Tube hydroforming (THF) under pulsating hydraulic pressures is a novel technique that applies pulsating hydraulic pressures that are periodically increased to deform tubular materials. The deformation behaviours of tubes in pulsating THF may differ compared to those in conventional non-pulsating THF due to the pulsating hydraulic pressures. The equivalent stress-strain relationship of metal materials is an ideal way to describe the deformation behaviours of the materials in plastic deformation. In this paper, the equivalent stress-strain relationships of SS304 tubes in pulsating hydroforming are determined based on experiments and simulation of free hydraulic bulging (FHB), and compared with those of SS304 tubes in non-pulsating THF and uniaxial tensile tests (UTT). The effect of the pulsation parameters, including amplitude and frequency, on the equivalent stress-strain relationships is investigated to reveal the plastic deformation behaviours of tubes in pulsating hydroforming. The results show that the deformation behaviours of tubes in pulsating hydroforming can be well described by the equivalent stress-stain relationship obtained by the proposed method. The amplitude and frequency of pulsating hydraulic pressure have distinct effects on the equivalent stress-strain relationships-the equivalent stress becomes augmented and the formability is enhanced with the increase of the pulsation amplitude and frequency.

비자성체 이중관의 원격장 에너지 전달 경로 (Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes)

  • 이재경
    • 비파괴검사학회지
    • /
    • 제21권5호
    • /
    • pp.526-531
    • /
    • 2001
  • 공통축 형태로 배치된 비자성체 이중관에 있어서 유한요소해석 상용 소프트웨어와 실험적인 방법을 각각 이용하여 원격장 와전류 에너지의 전달 경로를 연구하였다. 연구결과 이중관에 있어서 원격장 와전류 에너지는 두 관 사이의 공간을 따라 흐르는 것이 아니라, 단일 튜브의 경우와 마찬가지로 외측 튜브의 외면을 따라 흐름을 확인하였다. 이는 원격장 와전류 효과의 관벽투과 특성이 이중관에 있어서도 유효함을 보여주는 것이다. 따라서, 중수로형 핵연료 채널과 같은 이중관 형태를 대상으로 내관 및 외관의 내 외부 결함 탐상, gap 분포 및 지지대의 위치 확인 등에 원격장 와전류 방법의 관벽투과 특성이 응용될 수 있음을 보였다.

  • PDF

튜브 스피닝 공정에서 성형깊이가 컵형 튜브의 변형거동에 미치는 영향 (Effects of Forming Depth on the Deformation Behavior of Cup-like Tubes in Tube Spinning Process)

  • 신영철;윤덕재;임성주;최호준
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.360-365
    • /
    • 2012
  • The aim of this study was to investigate the effects of forming depth on the deformation behavior of cup-like tubes made of AISI1020 steel in tube spinning process. Spinning process was performed on cup-like tubes, which had an inner diameter of 34mm and thicknesses of 7, 8.5 or 11.5mm. The forming depths achieved were 3, 4, and 5.5mm. The complex deformation behaviors occurring during the tube spinning process was explained using the experimental results. Also analyzed were the causes of the material buildup and the bulge defect of inner surface, observed on cross section of tubes. The relationship between tube spinning conditions and the height of bulge defect was examined. The results indicate that bulge defect is increased with a decrease of the forming depth. Moreover, a critical forming depth exists for preventing the generation of the bulge defect in the tube spinning process. The present results will be useful for future decisions of forming depths for successful tube spinning of cup-like tubes.