Browse > Article
http://dx.doi.org/10.5695/JKISE.2009.42.6.280

Corrosion Property Evaluation of Copper Alloy Tubes against Sea Water  

Pang, Beilli (Department of Applied Materials Engineering, Chungnam National University)
Ong, Sang-Kil (Department of Applied Materials Engineering, Chungnam National University)
Lee, Hong-Ro (Department of Applied Materials Engineering, Chungnam National University)
Publication Information
Journal of the Korean institute of surface engineering / v.42, no.6, 2009 , pp. 280-286 More about this Journal
Abstract
In this study, the corrosion property of copper alloy tubes in seawater has been investigated. Three copper alloys of nominal composition Cu-20Zn-2Al(Al-Brass), Cu-30Ni(CN70/30) and Cu-10Ni(CN90/10) were considered. The samples were immersed in 3%NaCl flowing solution at $90^{\circ}C$ for 30, 50 and 80 days. Corrosion rate of copper alloy tubes in 3%NaCl flowing solution was investigated by weight-loss measurements and electrochemical test. The CN70/30 showed lowest corrosion rate among three copper alloy tubes. Because of passive films formation, corrosion rates of three types of copper tubes were decrease with time. Surface characteristics of copper alloy tubes were analyzed by optical micrograph(OM), scanning electronic microscopy (SEM), energy dispersive X-ray analysis(EDAX) and X-ray diffraction patterns(XRD). CN70/30 showed partly pitting problem on the surface owing to high Fe content, even though having high resistant against corrosion. Cracks appeared on the surface of CN90/10 and CN70/30 after more than 50 days immersion, which could be derived from high nickel contents.
Keywords
Copper alloy tube; Sea water; Heat exchanger; Immersion test; Corrosion rate measurement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Milošev, Corros. Sci., 49 (2007) 637   DOI   ScienceOn
2 J. Morales, G. T. Fernandez, S. Gonzalez, P. Esparza, R. C. Salvarezza, A. J. Arvia. Corros. Sci., 40(2-3) (1998) 177   DOI   ScienceOn
3 R. C. Newman, T. Shahrabi, Corrosion 49 (1993) 60   DOI
4 J.-T. Kim, S.-H. Kim, J. Kor. Inst. Surf. Eng., 41 (2008) 109   DOI   ScienceOn
5 A. Roine, Outokumpu HSC Chemistry for Windows (Version 4.0), Outokumpu Research Oy, Pori, Finland, 2000
6 Milošev I, Metiko-Hukovic, J. Electrochem Soc., 138 (1991) 61   DOI
7 K. M. Ismail, A. M. Fathi, W. A. Badawy, Corros. Sci., 48 (2006) 1912   DOI   ScienceOn
8 P. Christiani, G. Perboni, A. Debenedetti, Electrochim. Acta, 54 (2008) 100   DOI   ScienceOn
9 L. J. P. Drolenga, F. P. Ijsseling, B. H. Kolster, Werkstoffe und Korrosion, 34 (1983) 167   DOI
10 K. Abouswa, F. Elshawesh, O. Elragei, A. Elhood, Desalination, 205 (2007) 140   DOI   ScienceOn
11 J. M. Maciel, S. M. L. Agostinho, J. Appl. Electrochim., 30 (2000) 981   DOI   ScienceOn
12 T. M. Ahmed, Near-threshold Fatigue behavior of Copper Alloys in Air and Aqueous Environments: a High Cyclic Frequency Study. PhD thesis, University of British Columbia, Canada; May 2002
13 X. L. Zhu, T. Q. Lei, Corros. Sci., 44 (2002) 67   DOI   ScienceOn
14 J. Morales, G. T. Fernandez, S. Gonzales, P. Esparza, R. C. Salvarezza, A. J. Arvia, Corros. Sci., 40 (1998) 177   DOI   ScienceOn
15 W. A. Badawy, K. M. Ismail, A. M. Fathi, Electrochim. Acta, 50 (2005) 4182   DOI   ScienceOn
16 M. Metikos-Hukovic, R. Babic, Corros. Sci., 51 (2009) 70   DOI   ScienceOn
17 K. Al-Muhanna, K. Habib, Desalination, 250 (2010) 404   DOI   ScienceOn