• Title/Summary/Keyword: truss optimization

Search Result 237, Processing Time 0.019 seconds

Simultaneous analysis, design and optimization of trusses via force method

  • Kaveh, A.;Bijari, Sh.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, the Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization (ECBO) and Vibrating Particles System (VPS) algorithms and the force method are used for the simultaneous analysis and design of truss structures. The presented technique is applied to the design and analysis of some planer and spatial trusses. An efficient method is introduced using the CBO, ECBO and VPS to design trusses having members of prescribed stress ratios. Finally, the minimum weight design of truss structures is formulated using the CBO, ECBO and VPS algorithms and applied to some benchmark problems from literature. These problems have been designed by using displacement method as analyzer, and here these are solved for the first time using the force method. The accuracy and efficiency of the presented method is examined by comparing the resulting design parameters and structural weight with those of other existing methods.

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

Shape Optimization of the Plane Truss Structures with the Statical and Natural Frequency Constraints (정적(靜的) 및 고유진동수(固有振動數) 제약조건식(制約條件式)을 고려(考慮)한 평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관(關)한 연구(硏究))

  • Lee, Gyu Won;Lee, Gun Tea
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • In this study, decompositive optimization method of two levels was selected to optimize effectively the geometry of the truss which takes the multi-loading condition, and the allowable stress, bucking stress, displacement and natural frequency constraints into consideration. The algorithm of this study is made up of sectional optimization using the feasible direction method in level 1, and geometrical optimization employing Powell's one-direction search method which menimizes only objictive function in level 2. The results of this study acquired by beenning applied to structural model of the truss are as follows : 1. It is verified that the algorithm of this study effectively converges, independent of the initial geometry of the truss and the applied various constraints. 2. The optimum goemetry of the truss varies more considerably according to the constraints selected. 3. Under the condition of the same design, the weight of the truss can be decreased more considerably by means of optimizing even the geometry of truss than by means of optimizing the section of truss while fixing geometrical configuration of it, even though there might be a little difference according to the initial geometry of the truss and the design condition.

  • PDF

Optimum Design of Two-Dimensional Steel Structures Using Genetic Algorithms (유전자 알고리즘을 이용한 2차원 강구조물의 최적설계)

  • Kim, Bong-Ik;Kwon, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.75-80
    • /
    • 2007
  • The design variables for structural systems, in most practical designs, are chosen from a list of discrete values, which are commercially available sizing. This paper presents the application of Genetic Algorithms for determining the optimum design for two-dimensional structures with discrete and pseudocontinuous design variables. Genetic Algorithms are heuristic search algorithms and are effective tools for finding global solutions for discrete optimization. In this paper, Genetic Algorithms are used as the method of Elitism and penalty parameters, in order to improve fitness in the reproduction process. Examples in this paper include: 10 bar planar truss and 1 bay 8-story frame. Truss with discrete and pseudoucontinuous design variables and steel frame with W-sections are used for the design of discrete optimization.

Multi-stage approach for structural damage identification using particle swarm optimization

  • Tang, H.;Zhang, W.;Xie, L.;Xue, S.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.69-86
    • /
    • 2013
  • An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.

Truss Optimization based on Stochastic Simulated healing (SSA기법에 의한 트러스 최적화)

  • 이차돈;이원돈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.73-78
    • /
    • 1992
  • A stochastic simulated anneal ins (SSA) is a recent approach to the solution of problems characterized by large number of interacting degrees of freedom. SSA simulates the degrees of freedom in a problem in a such a way that they are a collection of atoms slowly being coolded into a ground state which would correspond to the stationary point of the problem. In this paper, for a randomly disturbed current design, SSA optimization technique is used, which establishes a probabilistic criterion for acceptance or rejection of current design and iteratively improves it to arrive at a stationary Point at which critical temperature is reached. Simple truss optimization problem which consider as their constraints only the tensile and compressive yielding strength of the members are tested using SSA. Satisfactory results are obtained and some discussions are given for the behavior of SSA on the tested truss structures.

  • PDF

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

An Evolutionary Procedure for Shape Optimization of Trusses (트러스의 형상 최적화에 관한 연구)

  • 정영식;김태문
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.296-303
    • /
    • 1996
  • This paper proposes a method for shape optimization of trusses. The potential savings offered by shape optimization will certainly be more significant than those resulting from fixed-geometry optimization. On the other hand, difficulties associated with topology and geometry optimization are still in existence. Even with a known topology, the geometry optimization problem is still a difficult task. An evolutionary procedure to be adopted and improved in this work, however, offers a means to achieve optimization in topology and geometry together. A plane truss structure is modelled within a specified domain and made to include a great number of nodes and members. Then the structure is analyzed and those members with stresses below a certain level are progressively eliminated from the structural system In this manner the structure evolves into a truss with a better topology and geometry by removing less important parts. Through the worked examples, we can see that the method presented in this Paper shows much promise.

  • PDF

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint

  • Zawidzki, Machi;Jankowski, Lukasz
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.715-725
    • /
    • 2018
  • Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.

Shape Optimization of Truss Structures with Multiobjective Function by α -Cut Approach (α -절단법에 의한 다목적함수를 갖는 트러스 구조물의 형상최적화)

  • Yang, Chang Yong;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.457-465
    • /
    • 1997
  • The Shape optimization makes it possible to reduce the weight of structure and cost then member sizing optimization. A vast amount of imprecise information is existed in constraints of the optimum design. It is very difficult and sometimes confusing to describe and to deal with the several criteria which contain fuzzy degrees of relatives importance. This paper proposed weighting strategies in the multiobjective shape optimization of fuzzy structural system by ${\alpha}$-cut approach. The algorithm in this research is numerically tested for 2-bar truss structure. The result show that. the user can choose the one optimum solution in practices as obtaining the optimum solutions according to the ${\alpha}$-cut approach, weight of volume and displacement.

  • PDF