Browse > Article
http://dx.doi.org/10.12989/sss.2018.21.6.715

Optimization of modular Truss-Z by minimum-mass design under equivalent stress constraint  

Zawidzki, Machi (Institute of Fundamental Technological Research, Polish Academy of Sciences)
Jankowski, Lukasz (Institute of Fundamental Technological Research, Polish Academy of Sciences)
Publication Information
Smart Structures and Systems / v.21, no.6, 2018 , pp. 715-725 More about this Journal
Abstract
Truss-Z (TZ) is an Extremely Modular System (EMS). Such systems allow for creation of structurally sound free-form structures, are comprised of as few types of modules as possible, and are not constrained by a regular tessellation of space. Their objective is to create spatial structures in given environments connecting given terminals without self-intersections and obstacle-intersections. TZ is a skeletal modular system for creating free-form pedestrian ramps and ramp networks. The previous research on TZ focused on global discrete geometric optimization of the spatial configuration of modules. This paper reports on the first attempts at structural optimization of the module for a single-branch TZ. The internal topology and the sizing of module beams are subject to optimization. An important challenge is that the module is to be universal: it must be designed for the worst case scenario, as defined by the module position within a TZ branch and the geometric configuration of the branch itself. There are four variations of each module, and the number of unique TZ configurations grows exponentially with the branch length. The aim is to obtain minimum-mass modules with the von Mises equivalent stress constrained under certain design load. The resulting modules are further evaluated also in terms of the typical structural criterion of compliance.
Keywords
Extremely Modular System; Truss-Z; structural optimization; modular structures; minimum mass design; frame structures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Calafiore, G.C. and Dabene, F. (2008), "Optimization under uncertainty with applications to design of truss structures", Struct. Multidiscip.O., 35, 189-200.   DOI
2 Christensen, P.W. and Klarbring, A. (2008), An Introduction to Structural Optimization, Springer Science & Business Media.
3 Dunbar, G., Holland, C.A. and Maylor, E.A. (2004), "Older Pedestrians: A Critical Review of the Literature", Road Safety Research Report No. 37, Department for Transport, London, England.
4 Jalkanen, J. and Koski, J. (2005), "Heuristic methods in space frame optimization", Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas, USA.
5 Lavan, O. and Oded, A. (2014), "Simultaneous topology and sizing optimization of viscous dampers in seismic retrofitting of 3D irregular frame structures", Earthq. Eng. Struct. D., 43(9), 1325-1342.   DOI
6 Martins, J.R.R.A. and Lambe, A.B. (2013), "Multidisciplinary design optimization: A survey of architectures", AIAA J., 51(9), 2049-2075.   DOI
7 Patnaik, S.N. and Hopkins, D.A. (1998), "Optimality of a fully stressed design", Comput. Method. Appl. M., 165(1-4), 215-221.   DOI
8 Pollack, M.E. (2005), "Intelligent technology for an aging population: The use of AI to assist elders with cognitive impairment", Artif. Intell. Mag., 26(2), 9-24.
9 Poplawski, B., Mikulowski, G., Mroz, A. and Jankowski, L. (2018), "Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments", Mech. Syst. Signal Pr., 100, 926-939.   DOI
10 Razani, A. (1965), "Behavior of fully stressed design of structures and its relationshipto minimum-weight design", AIAA J., 3(12), 2262-2268.   DOI
11 Torstenfelt, B. and Klarbring, A. (2006), "Structural optimization of modular product families with application to car space frame structures", Structural and Multidisciplinary Optimization, 32(2), 133-140.   DOI
12 Tugilimana, A., Thrall, A.P. and Coelho, R.F. (2017), "Conceptual design of modular bridges including layout optimization and component reusability", J. Bridge Eng., 22(11), 04017094.   DOI
13 Zawidzki, M. and Tateyama, K. (2011), "Application of evolution strategy for minimization of the number of modules in a truss branch created with the Truss-Z system", Proceedings of the 2nd International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp Press, Stirlingshire, UK, Paper 9.
14 Zawidzki, M. (2013), "Creating organic 3-dimensional structures for pedestrian traffic with reconfigurable modular Truss-Z system", Int. J. Des. Nature Ecodynam., 8(1), 61-87.   DOI
15 Zawidzki, M. (2011), Tiling of a Path with Trapezoids in a Constrained Environment with Backtracking Algorithm, Wolfram Demonstrations Project, http://demonstrations.wolfram.com/TilingOfAPathWithTrapezoidsInAConstrainedEnvironmentWithBack
16 Zawidzki, M. and Nishinari, K. (2012), "Modular Truss-Z system for self-supporting skeletal free-form pedestrian networks", Adv. Eng. Softw., 47(1), 147-159.   DOI
17 Zawidzki, M. and Nishinari, K. (2013), "Application of evolutionary algorithms for optimum layout of Truss-Z linkage in an environment with obstacles", Adv. Eng. Softw., 65, 43-59.   DOI
18 Zawidzki, M. (2015), "Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-theory approach", Adv. Eng. Softw., 81, 41-49.   DOI