• Title/Summary/Keyword: trolley

Search Result 195, Processing Time 0.029 seconds

Design and Implementation of the Simulator for Evaluating the Performance of Container Cranes (컨테이너크레인 성능평가를 위한 시뮬레이터 설계 및 구현)

  • Won, Seung-Hwan;Choi, Sang-Hei
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2009
  • According to the increase of container flows and the appearance of large-sized container vessels, the container handling equipment in ports is evolving continuously. This research introduces the simulation model for evaluating in detail the mechanical productivity of container cranes. The model considers a single trolley and dual trolleys as the mechanism of a container crane and a single lift, a twin lift, and a tandem lift as the spreader type of it. Additionally, the detail specifications such as the dimension and the speed of a container crane are inputted and the kinematic characteristics of it are simulated. The model also considers the size of a vessel, the storage position of containers in the vessel, and the weight of containers as external physical constraints. Experimental conditions can be configured conveniently because various parameters in the model are separated. Moreover, the model can accommodate flexibly new equipment types and the changes of the existing equipment because it is designed and developed in object-oriented concept.

  • PDF

Stabilization Controller Design of a Container Crane for High Productivity in Cargo Handling Using a RCGA (실수코딩유전알고리즘을 이용한 하역생산성 향상용 컨테이너 크레인의 안정화 제어기 설계)

  • Lee, Soo-Young;Ahn, Jong-Kap;Choi, Jae-Jun;Son, Jeong-Ki;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.515-521
    • /
    • 2007
  • To increase the stevedore efficiency and service level at container terminal, it is essential to reduce working time of container crane which has a bottle neck in the logistic flow of container. The working speed and safety are required to be improved by controlling the movement of the trolley as quick as possible without big overshoot and any residual swing motion of container in the vicinity of target position. This paper presents optimal state feedback control using RCGAs in the case of existing constrained conditions

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.

Physical Modeling for Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능 개선을 위한 물리적 모델링)

  • Kim, Yeong-Hwan;Jung, Pyung-Ki;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.1 s.29
    • /
    • pp.80-88
    • /
    • 2006
  • Construction graphical simulations usually do not reflect physical properties of construction equipment and material because there are restricted to the geometric model. The complete description of construction operations is difficult for graphical simulation without a physical modeling. The object of this research is to enhance the functionality of restricted simulation system to geometric model. And research is conducted to overcome the limitation of current construction graphical simulation system through the connection geometric model and physical model with the physical properties of construction equipment and material such as crane's cable oscillation. The motion equations for the oscillation of crane cable as a result of the trolley's movement and the boom's rotation were derived. The equations were solved through numerical analysis and the results were simulated visually. The realistic description with physical modeling of construction operations will contribute for ensuring preliminary against risks and improving constructability as well as the application of various fields.

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

Design of Bridge Transport System with Equal Incremental Telescopic Motion (동일신축 텔레스코픽모션을 갖는 천정이동장치 설계)

  • Yoon, Kwang-Ho;Lee, Hyo-Jik;Lee, Jong-Kwang;Park, Byung-Suk;Kim, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.227-235
    • /
    • 2010
  • This paper introduces the design of a bridge transport system with a telescopic tube for positioning equipment to perform remote handling tasks in a radioactive facility. It consists of an extensible and retractable telescopic tube assembly for z-direction motion, a cabling system for management of power and signal cables, and a trolley system for transverse motion and accommodating servo drives. The working environment for the bridge transport system with the telescopic tube requires strict geometrical constraints, including a short height, short telescopic tube length when retracted, and a long stroke. These constraints were met by solving a nonlinear programming problem involving the optimal dimensions. This paper introduces a cabling system for effective management of cables with changeable lengths to accommodate telescopic motions and a selection guide for servo drives that are sufficient to drive the system.

Analysis of Autonomous Driving Vehicle and Korea's Competitiveness Strategy (자율주행차 현황분석과 한국의 경쟁력 확보 전략)

  • Yang, Eun-ji;Kang, Su-jin;Kwon, So-ei;Kim, Da-yeon;Kim, Ji-won;Lee, Yu-jeong;Hwang, Hye-jeong;Chang, Young-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In Korea, partial self-driving feature is added on Genesis G80, Tivoli 2017, and others, and full implementation is under evaluation. Tesla already completed test for full self-driving car, Tesla Model 'X'. Further adoption of self-driving car in market will bring benefits to the elderly and disabled, meanwhile traffic accident will be decreased. However, related regulations for traffic accident with autonomous car including ethical responsibility is not fully established yet. In addition, security and privacy issue of self-driving cars should be improved as well. In this paper, domestic researches and analysis status on autonomous car will be summarized, and proper activation model will be proposed for the previously described issues.

Bio-mechanical Analysis on the Lower Back using Human Model during Pushing the Manual Vehicles (인체모델을 이용한 농작업자의 밀기 작업시 요추부 생체 역학적 평가)

  • Lim, Dae-Seob;Lee, Kyoung-Suk;Choi, Ahn-Ryul;Kim, Young-Jin;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.286-294
    • /
    • 2009
  • A high prevalence of protected horticulture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of product transporting. The purpose of this study is to evaluate quantitatively the spinal load of operator using manual vehicles to predict and prevent musculo-skeletal risks. Spinal load in operators using 4 kinds of manual vehicle were analyzed. Before evaluating spinal load on operator using the manual vehicles by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While Operators pushed the manual vehicles(wheelbarrow, Trolley, 2 wheel cart, and 4 wheel cart) contained loads that were 0 N and 800 N, their spinal loads(compression force, shear force) were evaluated. The compression force demonstrated under the NIOSH action limits - 3410N - for all 4 manual vehicle's operators(McGill 1997; Marras 2000). However, the lateral shear force demonstrated over the University of Waterloo - 500N - for all 3 manual vehicle's operators except 4Wheel cart (Yingline and McGill, 1999). Therefore, operators have risks in prevalence of the musculo-skeletal disorders due to shear force. The findings of this study suggest that it need to be determine the spinal load, especially lateral shear force in designing the manual vehicles in the future.

Measuring Technique For Acoustic Roughness of Rail Surface With Homogeneous Displacement Sensors (동일 변위센서를 사용한 레일표면 음향조도의 측정방법)

  • Jeong, Wootae;Jang, Seungho;Kho, Hyo-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7941-7948
    • /
    • 2015
  • Rolling noises during train operation are caused by vibration excited from irregularities of surface roughness between wheel and rail. Therefore, a proper measurement and analysis techniques of acoustic roughness between wheel and rail surface are required for transmission, prediction, and analysis of the train rolling noise. However, since current measuring devices and methods use trolley-based manual handling devices, the measurements induce unstable measuring speed and vibrational interface that increases errors and disturbances. In this paper, a new automatic rail surface exploring platform with a speed controller has been developed for improving measurement accuracy and reducing inconsistency of measurements. In addition, we propose a data integration method of the rail surface roughness with multiple homogeneous displacement sensors and verified the accuracy of the integrated data through standard test-bed railway track investigation.

The Optimization of Continuous Casting Process for Production of Copper Clad Steel Wire (동피복 복합선재 제조를 위한 연속주조공정의 최적화)

  • Cho, Hoon;Kim, Dae-Geun;Hwang, Duck-Young;Jo, Hyung-Ho;Kim, Yun-Kyu;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.6
    • /
    • pp.259-264
    • /
    • 2005
  • The copper clad steel wire is used extensively as lead wires of electronic components such as capacitors, diodes and glass sealing lamp because the wire combines the strength and low thermal expansion characteristic of Fe-Ni steel with the conductivity and corrosion resistance of copper. In order to fabricate the copper clad steel wire, several processes including electro-plating, tubecladding extrusion process and dip forming process have been introduced and applied. The electroplating process for the production of copper clad steel wire shows poor productivity and induces environmental load generation such as electroplating solution. The dip forming process is suitable to mass production of copper clad steel such as trolley wire. and need expensive manufacturing facilities. The present paper describes the improvement of the conventional continuous casting process to fabricate copper clad steel wire, which its core metal is low thermal expansion Fe-Ni alloy and its sheath material is copper. In particular, the formation of intermetallic compound at interface between core and sheath was investigated in order to introduce optimum continuous casting process parameter for fabrication of copper clad steel wire with higher electrical conductivity. The mechanical strength of copper clad steel wire was also investigated through wiredrawing process with of 95% in total reduction ratio.