• 제목/요약/키워드: triboelectric

검색결과 73건 처리시간 0.03초

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Parametric Analysis and Design of SDOF Vibration-Type Triboelectric Generator

  • ;전지훈;최덕현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.398-398
    • /
    • 2016
  • A triboelectric generator uses the principles of static electrification and electrostatic induction to convert mechanical energy into useful electrical energy. In this work we study a single degree of freedom (SDOF) vibration type triboelectric generator that is initiated by a vibrating source at its base. The system is modeled in Abaqus and the design parameters are systematically explored by their effect on the output. The relationships between the parameters: input force, input frequency, mass, spring stiffness and gap between the plates, are analyzed. Finally, based on initial experiments, and simulation results, a design methodology is formulated. The methodology will provide guidance for application specific design of reliable and effective vibration type triboelectric generators.

  • PDF

마찰전기 셰이커: 전기 발생 마라카스 제작 및 특성평가 (Triboelectric Shaker: Fabrication and Characterization of Maracas-Type Generators)

  • 김혜준;김현승;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.292-297
    • /
    • 2023
  • Triboelectric devices are attracting attention from researchers as self-powered electronic systems that can instantly convert mechanical input into electrical energy output. To improve triboelectric energy harvesting performance, increasing the number of contacts as well as the contact area has been carried out by numerous researchers. In this study, we design a shaker-type energy harvester which is called as maracas triboelectric generator (M-TEG), inspired by the structure of maracas, one of the musical percussion instruments. A tripod frame is inserted to the inside of a cylindrical case, which is a device with the electrodes of aluminum and copper. Then, the triboelectric energy harvesting characteristics between polypropylene (PP) balls and the electrodes are measured. The M-TEG with the frame generates the energy harvesting signals up to ~100 V and ~2.5 ㎂ due to larger contact area and numbers, which enhances the voltage and current output by 250% and 610% compared to that without the frame, respectively. This study presents the feasibility of self-powered sensors and toys using improved triboelectric energy performance with a low-cost and simple manufacturing process in the interesting structure.

강자성-강유전성 복합체를 활용한 자기-기계-마찰전기 변환 발전소자 (Magneto-Mechano-Triboelectric Generator Enabled by Ferromagnetic-Ferroelectric Composite)

  • 임예슬;황건태
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.112-117
    • /
    • 2024
  • The Internet of Things (IoT) device is a key component for Industry 4.0, which is the network in homes, factories, buildings, and infrastructures to monitor and control the systems. To demonstrate the IoT network, batteries are widely utilized as power sources, and the batteries inevitably require repeated replacement due to their limited capacity. Magneto-mechano-electric (MME) generators are one of the candidate to develop self-powered IoT systems since MME generators can harvest electricity from stray alternating current (AC) magnetic fields arising from electric power cables. Herein, we report a magneto-mechano-triboelectric generator enabled by a ferromagnetic-ferroelectric composite. In the triboelectric nylon matrix, a ferromagnetic carbonyl iron powder (CIP) was introduced to induce magnetic force near the AC magnetic field for MME harvesting. Additionally, a ferroelectric ceramic powder was also added to the MME composite material to enhance the charge-trapping capability during triboelectric harvesting. The final ferromagnetic-ferroelectric composite-based MME triboelectric harvester can generate an open-circuit voltage and a short-circuit current of 110 V and 8 μA, respectively, which were enough to turn on a light emitting diode (LED) and charge a capacitor. These results verify the feasibility of the MME triboelectric generator for not only harvesting electricity from an AC magnetic field but also for various self-powered IoT applications.

소프트 식각법을 이용한 효율적 제작방식의 마찰전기 에너지 수확소자 개발 (Cost Effective Fabrication of a Triboelectric Energy Harvester Using Soft Lithography)

  • 이준영;성태훈;여종석
    • 한국진공학회지
    • /
    • 제22권4호
    • /
    • pp.198-203
    • /
    • 2013
  • 에너지 수확은 우리주변에 존재하는 버려지는 에너지를 유용한 전기에너지로 변환하는 기술이다. 마찰전기 소자는 접촉을 통한 정전기를 유도하는 원리로 동력학적 에너지를 전기에너지로 전환하는 소자이다. 본 연구에서는 소프트 식각 기술을 활용하여 제작 단계를 최소화한 마찰전기 에너지 수확소자를 개발하고, 그 전기적 특성을 측정하였다. 마찰전기를 통한 발전은 마이크로패턴을 통해 마이크로 거칠기를 가진 알루미늄 층과 PDMS 층 사이에서 발생한다. 이때 PDMS 층의 마이크로 패턴은 마스크리스 식각을 통해 만들어진 알루미늄 층의 마이크로 패턴을 소프트 식각법으로 바로 본뜨는 방식으로 제작되었다. 본 소자는 2 V와 20 nA의 발전 성능을 나타낸다.

Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용 (Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering)

  • 김선아;박상식
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

SnO2 마찰층을 이용한 마찰 대전 소자의 에너지 생산성 향상 (Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator)

  • 이노호;신재록;유지은;유동훈;구본율;이성우;안효진;최병준
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.321-325
    • /
    • 2015
  • The triboelectric property of a material is important to improve an efficiency of triboelectric generator (TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semiconducting $SnO_2$ which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Vertical contact mode is utilized to evaluate the TEG efficiency. $SnO_2$ thin film is deposited by atomic layer deposition on bare Si wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Triboelectric series are determined by comparing the polarity of output voltage of 2 samples among $SnO_2$, PET, and glass. In conclusion, $SnO_2$, as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electron and PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore, the $SnO_2$-PET combination shows the highest TEG efficiency.

마찰전기 효과가 접목된 하이브리드 자기-기계-전기 발전 소자의 출력 특성 향상연구 (Enhancement of Power Generation in Hybrid Magneto-Mechano-Electric Generator with Triboelectric Effect)

  • 백창민;김민우;이지원;김현아;정지윤;윤준현;김효일;박예진;김기훈;김소화;김승헌;김정민;이혜선;장정원;정민교;최진혁;하승연;이승아;최한승;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.639-646
    • /
    • 2022
  • Energy harvesting technologies that can convert wasted various energy into usable electrical energy have been widely investigated to overcome the limitation of batteries for the powering of IoT sensors and small electronic devices. Hybrid energy harvesting is known as a technology that enhances the output power of single energy harvesting device by housing two or more various energy harvesting mechanisms. In this study, we introduce a hybrid MME (Magneto-Mechano-Electric) generator coupled with the triboelectric effect. Through FEA modeling, four triboelectric materials, including PI (Polyimide), PFA(Teflon), Cu, and Al, were selected and compared with the expected triboelectric potentials. The effect of surface morphology was investigated as well. Among various combination of triboelectric materials and surface morphologies, PFA-Al combination with the surface morphology having nano-scale square projections showed highest output potential under triboelectrification. It is also experimentally confirmed that output voltage and power of the hybrid MME generator with triboelectric material combinations.

자가발전활용을 위한 마찰전기 나노발전소자의 제작 (Fabrication of triboelectric nanogenerator for self-sufficient power source application)

  • 신소윤;김상재;발라스브라마니안 사라판구말
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

Triboelectric Nanogenerator (TENG)를 위한 Rutile TiO2 박막 성능 및 특성 평가 (Evaluating the performance and characteristics of Rutile TiO2 thin film for Triboelectric Nanogenerator (TENG))

  • 문지현;김한재;김효배;안지훈
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.324-330
    • /
    • 2021
  • As energy harvesting technology becomes important in relation to environmental issues, piezoelectric materials that convert mechanical energy into electrical energy are attracting attention. However, PZT, a representative material for piezoelectricity, is becoming difficult to use due to the problem that its components can cause environmental pollution. For this reason, recent research suggests a triboelectric nanogenerator (TENG) that generates energy through the combined effect of triboelectricity and electric induction for alternative piezoelectric devices. In TENG, electrical power is determined by the dielectric constant, thickness, and grain generation of the charged material. Therefore, in this study, a Rutile phase TiO2 thin film with high dielectric constant was formed using the spin-coating process and the effect of annealing was investigated. For electrical analysis, a TENG device was fabricated using PTFE as a material with an opposite charge, and electrical output according to film thickness and grain formation was comparatively analyzed.