DOI QR코드

DOI QR Code

Enhancement of Power Generation in Hybrid Magneto-Mechano-Electric Generator with Triboelectric Effect

마찰전기 효과가 접목된 하이브리드 자기-기계-전기 발전 소자의 출력 특성 향상연구

  • Baek, Chang Min (School of Materials Engineering, Yeungnam University) ;
  • Kim, Min Woo (School of Materials Engineering, Yeungnam University) ;
  • Lee, Ji Won (School of Materials Engineering, Yeungnam University) ;
  • Kim, Hyun Ah (School of Materials Engineering, Yeungnam University) ;
  • Jung, Ji Yun (School of Materials Engineering, Yeungnam University) ;
  • Yoon, Jun Hyeon (School of Materials Engineering, Yeungnam University) ;
  • Kim, Hyo Il (School of Materials Engineering, Yeungnam University) ;
  • Park, Ye Jin (School of Materials Engineering, Yeungnam University) ;
  • Kim, Gi Hun (School of Materials Engineering, Yeungnam University) ;
  • Kim, So Hwa (School of Materials Engineering, Yeungnam University) ;
  • Kim, Seung Heon (School of Materials Engineering, Yeungnam University) ;
  • Kim, Jeong Min (School of Materials Engineering, Yeungnam University) ;
  • Lee, Hye Seon (School of Materials Engineering, Yeungnam University) ;
  • Jang, Jeong Won (School of Materials Engineering, Yeungnam University) ;
  • Jeong, Min Gyo (School of Materials Engineering, Yeungnam University) ;
  • Choi, Jin Hyeok (School of Materials Engineering, Yeungnam University) ;
  • Ha, Seung Yun (School of Materials Engineering, Yeungnam University) ;
  • Lee, Seungah (School of Materials Engineering, Yeungnam University) ;
  • Choi, Han Seung (School of Materials Engineering, Yeungnam University) ;
  • Ryu, Jungho (School of Materials Engineering, Yeungnam University)
  • 백창민 (영남대학교 신소재공학부) ;
  • 김민우 (영남대학교 신소재공학부) ;
  • 이지원 (영남대학교 신소재공학부) ;
  • 김현아 (영남대학교 신소재공학부) ;
  • 정지윤 (영남대학교 신소재공학부) ;
  • 윤준현 (영남대학교 신소재공학부) ;
  • 김효일 (영남대학교 신소재공학부) ;
  • 박예진 (영남대학교 신소재공학부) ;
  • 김기훈 (영남대학교 신소재공학부) ;
  • 김소화 (영남대학교 신소재공학부) ;
  • 김승헌 (영남대학교 신소재공학부) ;
  • 김정민 (영남대학교 신소재공학부) ;
  • 이혜선 (영남대학교 신소재공학부) ;
  • 장정원 (영남대학교 신소재공학부) ;
  • 정민교 (영남대학교 신소재공학부) ;
  • 최진혁 (영남대학교 신소재공학부) ;
  • 하승연 (영남대학교 신소재공학부) ;
  • 이승아 (영남대학교 신소재공학부) ;
  • 최한승 (영남대학교 신소재공학부) ;
  • 류정호 (영남대학교 신소재공학부)
  • Received : 2022.08.29
  • Accepted : 2022.09.02
  • Published : 2022.11.01

Abstract

Energy harvesting technologies that can convert wasted various energy into usable electrical energy have been widely investigated to overcome the limitation of batteries for the powering of IoT sensors and small electronic devices. Hybrid energy harvesting is known as a technology that enhances the output power of single energy harvesting device by housing two or more various energy harvesting mechanisms. In this study, we introduce a hybrid MME (Magneto-Mechano-Electric) generator coupled with the triboelectric effect. Through FEA modeling, four triboelectric materials, including PI (Polyimide), PFA(Teflon), Cu, and Al, were selected and compared with the expected triboelectric potentials. The effect of surface morphology was investigated as well. Among various combination of triboelectric materials and surface morphologies, PFA-Al combination with the surface morphology having nano-scale square projections showed highest output potential under triboelectrification. It is also experimentally confirmed that output voltage and power of the hybrid MME generator with triboelectric material combinations.

Keywords

Acknowledgement

본 연구는 한국 연구재단의 기본연구사업 (2022R1F1A1073594)을 통하여 진행되었습니다.

References

  1. H. J. Kim, J. Y. Park, K. N. Jin, and M. H. Noh, LHI J., 5, 99 (2014). [DOI: https://doi.org/10.5804/LHIJ.2014.5.2.099]
  2. J. H. Jung, D. M. Lee, Y. J. Kim, and S. W. Kim, Ceramist, 22, 110 (2019). [DOI: https://doi.org/10.31613/ceramist.2019.22.2.03]
  3. G. T. Hwang, J. Ryu, and W. H. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 271 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.5.271]
  4. S. Y. Lee and Y. Choi, Polymer Science and Technology., 31, 484-489 (2020).
  5. W. Kim, H. U. Ko, S. C. Mun, J. H. Kim, and H. S. Kim, KIC News, 16, 27 (2013).
  6. U. Khan and S. W. Kim, ACS Nano, 10, 6429 (2016). [DOI: https://doi.org/10.1021/acsnano.6b04213]
  7. H. E. Lee, J. H. Park, D. Jang, J. H. Shin, T. H. Im, J. H. Lee, S. K. Hong, H. S. Wang, M. S. Kwak, M. Peddigari, C. K. Jeong, Y. Min, C. H. Park, J. J. Choi, J. Ryu, W. H. Yoon, D. Kim, K. J. Lee, and G. T. Hwang, Nano Energy, 75, 104951 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104951]
  8. M. Ibrahim, J. Jiang, Z. Wen, and X. Sun, Nanoenergy Adv., 1, 58 (2021). [DOI: https://doi.org/10.3390/nanoenergyadv1010004]
  9. M. S. Kwak, K. W. Lim, H. Y. Lee, M. Peddigari, J. Jang, C. K. Jeong, J. Ryu, W. H. Yoon, S. N. Yi, and G. T. Hwang, Nanoscale, 13, 8418 (2021). [DOI: https://doi.org/10.1039/d1nr01336j]
  10. H. Ryu, H. J. Yoon, and S. W. Kim, Adv. Mater., 31, 1802898 (2019). [DOI: https://doi.org/10.1002/adma.201802898]
  11. A. Rasheed, H. Park, M. K. Sohn, T. H. Lee, and D. J. Kang, Ceramist, 23, 54 (2020). [DOI: https://doi.org/10.31613/ceramist.2020.23.1.05]
  12. S. Parandeh, N. Etemadi, M. Kharaziha, G. Chen, A. Nashalian, X. Xiao, and J. Chen, Adv. Funct. Mater., 31, 2105169 (2021). [DOI: https://doi.org/10.1002/adfm.202105169]
  13. V. Annapureddy, H. Palneedi, G. T. Hwang, M. Peddigari, D. Y. Jeong, W. H. Yoon, K. H. Kim, and J. Ryu, Sustainable Energy Fuels, 1, 2039 (2017). [DOI: https://doi.org/10.1039/c7se00403f]
  14. J. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. Jeong, and D. Y. Jeong, Energy Environ. Sci., 8, 2402 (2015). [DOI: https://doi.org/10.1039/C5EE00414D]
  15. M. S. Kwak, M. Peddigari, H. Y. Lee, Y. Min, K. I. Park, J. H. Kim, W. H. Yoon, J. Ryu, S. N. Yi, J. Jang, and G. T. Hwang, Adv. Funct. Mater., 32, 2112028 (2022). [DOI: https://doi.org/10.1002/adfm.202112028]
  16. Z. L. Wang, ACS Nano, 7, 9533 (2013). [DOI: https://doi.org/10.1021/nn404614z]
  17. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, Nat. Commun., 10, 1427 (2019). [DOI: https://doi.org/10.1038/s41467-019-09461-x]
  18. K. W. Lim, M. Peddigari, C. H. Park, H. Y. Lee, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, J. K. Hong, J. T. Yeom, W. H. Yoon, J. Ryu, S. N. Yi, and G. T. Hwang, Energy Environ. Sci., 12, 666 (2019). [DOI: https://doi.org/10.1039/C8EE03008A]
  19. J. Nie, X. Chen, and Z. L. Wang, Adv. Funct. Mater., 29, 1806351 (2019). [DOI: https://doi.org/10.1002/adfm.201806351]
  20. M. A. Parvez Mahmud, J. J. Lee, G. H. Kim, H. J. Lim, and K. B. Choi, Microelectron. Eng., 159, 102 (2016). [DOI: https://doi.org/10.1016/j.mee.2016.02.066]
  21. H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). [DOI: https://doi.org/10.1039/D0EE01574A]
  22. R. Sriramdas, M. G. Kang, M. Meng, M. Kiani, J. Ryu, M. Sanghadasa, and S. Priya, Adv. Energy Mater., 10, 1903689 (2020). [DOI: https://doi.org/10.1002/aenm.201903689]
  23. H. E. Lee, J. H. Park, D. Jang, J. H. Shin, T. H. Im, J. H. Lee, S. K. Hong, H. S. Wang, M. S. Kwak, M. Peddigari, C. K. Jeong, Y. Min, C. H. Park, J. J. Choi, J. Ryu, W. H. Yoon, D. Kim, K. J. Lee, and G. T. Hwang, Nano Energy, 75, 104951 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104951]