DOI QR코드

DOI QR Code

Triboelectric Shaker: Fabrication and Characterization of Maracas-Type Generators

마찰전기 셰이커: 전기 발생 마라카스 제작 및 특성평가

  • Hyejun Kim (Major of Electronic Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Hyunseung Kim (Major of Electronic Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Chang Kyu Jeong (Major of Electronic Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University)
  • 김혜준 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 김현승 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 정창규 (전북대학교 신소재공학부 전자재료공학전공)
  • Received : 2023.01.31
  • Accepted : 2023.02.09
  • Published : 2023.05.01

Abstract

Triboelectric devices are attracting attention from researchers as self-powered electronic systems that can instantly convert mechanical input into electrical energy output. To improve triboelectric energy harvesting performance, increasing the number of contacts as well as the contact area has been carried out by numerous researchers. In this study, we design a shaker-type energy harvester which is called as maracas triboelectric generator (M-TEG), inspired by the structure of maracas, one of the musical percussion instruments. A tripod frame is inserted to the inside of a cylindrical case, which is a device with the electrodes of aluminum and copper. Then, the triboelectric energy harvesting characteristics between polypropylene (PP) balls and the electrodes are measured. The M-TEG with the frame generates the energy harvesting signals up to ~100 V and ~2.5 ㎂ due to larger contact area and numbers, which enhances the voltage and current output by 250% and 610% compared to that without the frame, respectively. This study presents the feasibility of self-powered sensors and toys using improved triboelectric energy performance with a low-cost and simple manufacturing process in the interesting structure.

Keywords

Acknowledgement

본 연구는 2022년 과학기술정보통신부 재원으로 한국연구재단의 지원(2022R1A2C4002037, 2022R1A4A3032923)을 받아 수행된 결과입니다.

References

  1. D. W. Kim, H. Kim, G. T. Hwang, S. B. Cho, S. H. Jeon, H. W. Kim, C. K. Jeong, S. Chun, and C. Pang, ACS Energy Lett., 7, 1820 (2022). [DOI: https://doi.org/10.1021/acsenergylett.2c00259]
  2. A. Harb, Renewable Energy, 36, 2641 (2011). [DOI: https://doi.org/10.1016/j.renene.2010.06.014]
  3. M. L. Ku, W. Li, Y. Chen, and K.J.R. Liu, IEEE Commun. Surv. Tutorials, 18, 1384 (2015). [DOI: https://doi.org/10.1109/COMST.2015.2497324]
  4. Y. Zhang, C. K. Jeong, J. Wang, X. Chen, K. H. Choi, L. Q. Chen, W. Chen, Q. Zhang, and Q. Wang, Adv. Mater., 33, 2103056 (2021). [DOI: https://doi.org/10.1002/adma.202103056]
  5. S. Kim, Y. Na, C. Nam, C. K. Jeong, K. T. Kim, and K. I. Park, Nano Energy, 103, 107824 (2022). [DOI: https://doi.org/10.1016/j.nanoen.2022.107824]
  6. S. Jung, J. Oh, U. J. Yang, S. M. Lee, J. Lee, M. Jeong, Y. Cho, S. Kim, J. M. Baik, and C. Yang, Nano Energy, 77, 105271 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.105271]
  7. C. He, W. Zhu, B. Chen, L. Xu, T. Jiang, C. B. Han, G. Q. Gu, D. Li, and Z. L. Wang, ACS Appl. Mater. Interfaces, 9, 26126 (2017). [DOI: https://doi.org/10.1021/acsami.7b08526]
  8. F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy, 1, 328 (2012). [DOI: https://doi.org/10.1016/j.nanoen.2012.01.004]
  9. J. Park, Y. W. Lim, S. Y. Cho, M. Byun, K. I. Park, H. E. Lee, S. D. Bu, K. T. Lee, Q. Wang, and C. K. Jeong, Small, 18, 2104472 (2022). [DOI: https://doi.org/10.1002/smll.202104472]
  10. C. Sohn, J. J. Lee, K. Kim, and C. K. Jeong, ECS J. Solid State Sci. Technol., 11, 055006 (2022). [DOI: https://doi.org/10.1149/2162-8777/ac6d79]
  11. C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, Adv. Energy Mater., 9, 1802906 (2019). [DOI: https://doi.org/10.1002/aenm.201802906]
  12. S. Niu and Z. L. Wang, Nano Energy, 14, 161 (2015). [DOI: https://doi.org/10.1016/j.nanoen.2014.11.034]
  13. S. Pan and Z. Zhang, Friction, 7, 2 (2019). [DOI: https://doi.org/10.1007/s40544-018-0217-7]
  14. E. C. Shin, J. H. Ko, H. K. Lyeo, and Y. H. Kim, Phys. Rev. Research, 4, 023131 (2022). [DOI: https://doi.org/10.1103/PhysRevResearch.4.023131]
  15. X. Chen, C. Jiang, Y. Song, B. Shao, Y. Wu, Z. Song, T. Song, Y. Wang, and B. Sun, Nano Energy, 100, 107495 (2022). [DOI: https://doi.org/10.1016/j.nanoen.2022.107495]
  16. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, Nat. Commun., 10, 1427 (2019). [DOI: https://doi.org/10.1038/s41467-019-09461-x]
  17. X. Zhang, L. Chen, Y. Jiang, W. Lim, and S. Soh, Chem. Mater., 31, 1473 (2019). [DOI: https://doi.org/10.1021/acs.Chemmater.8b04526]
  18. G. Khandelwal, N.P.M.J. Raj, and S. J. Kim, Adv. Energy Mater., 11, 2101170 (2021). [DOI: https://doi.org/10.1002/aenm.202101170]
  19. T.A.L. Burgo, F. Galembeck, and G. H. Pollack, J. Electrostat., 80, 30 (2016). [DOI: https://doi.org/10.1016/j.elstat.2016.01.002]
  20. G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang, Nano Lett., 12, 4960 (2012). [DOI: https://doi.org/10.1021/nl302560k]
  21. J. Yang, J. Chen, Y. Yang, H. Zhang, W. Yang, P. Bai, Y. Su, and Z. L. Wang, Adv. Energy Mater., 4, 1301322 (2014). [DOI: https://doi.org/10.1002/aenm.201301322]
  22. G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang, Nano Lett., 13, 847 (2013). [DOI: https://doi.org/10.1021/nl4001053]
  23. X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen, L. Song, H. Yuan, Y. Ji, P. Wang, Z. Li, M. Xu, and Z. L. Wang, Adv. Energy Mater., 9, 1902460 (2019). [DOI: https://doi.org/10.1002/aenm.201902460]
  24. A. Alsabri, F. Tahir, and S. G. Al-Ghamdi, Mater. Today: Proc., 56, 2245 (2022). [DOI: https://doi.org/10.1016/j.matpr.2021.11.574]
  25. D. Jiang, H. Ouyang, B. Shi, Y. Zou, P. Tan, X. Qu, S. Chao, Y. Xi, C. Zhao, Y. Fan, and Z. Li, InfoMat, 2, 1191 (2020). [DOI: https://doi.org/10.1002/inf2.12103]