DOI QR코드

DOI QR Code

Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator

SnO2 마찰층을 이용한 마찰 대전 소자의 에너지 생산성 향상

  • Lee, No Ho (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shin, Jae Rok (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Ji Een (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • You, Dong Hun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sung Woo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이노호 (서울과학기술대학교 신소재공학과) ;
  • 신재록 (서울과학기술대학교 신소재공학과) ;
  • 유지은 (서울과학기술대학교 신소재공학과) ;
  • 유동훈 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 이성우 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2015.09.24
  • Accepted : 2015.10.25
  • Published : 2015.10.28

Abstract

The triboelectric property of a material is important to improve an efficiency of triboelectric generator (TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semiconducting $SnO_2$ which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Vertical contact mode is utilized to evaluate the TEG efficiency. $SnO_2$ thin film is deposited by atomic layer deposition on bare Si wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Triboelectric series are determined by comparing the polarity of output voltage of 2 samples among $SnO_2$, PET, and glass. In conclusion, $SnO_2$, as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electron and PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore, the $SnO_2$-PET combination shows the highest TEG efficiency.

Keywords

References

  1. Z. L. Wang, G. Zhu, Y. Yang, S. Wang and C. Pan: Mater. Today, 15 (2012) 532. https://doi.org/10.1016/S1369-7021(13)70011-7
  2. Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu and Z. L. Wang: ACS Nano, 7 (2013) 9213. https://doi.org/10.1021/nn403838y
  3. F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang: Nano Lett., 12 (2012) 3109. https://doi.org/10.1021/nl300988z
  4. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu and Z. L. Wang: Nano Lett., 13 (2013) 2226. https://doi.org/10.1021/nl400738p
  5. W. Yang, J. Chen, G. Zhu, X. Wen, P. Bai, Y. Su, Y. Lin and Z. Wang: Nano Res., 6 (2013) 880. https://doi.org/10.1007/s12274-013-0364-0
  6. Y. H. Ko, G. Nagaraju, S. H. Lee and J. S. Yu: ACS Appl. Mater. Interfaces, 6 (2014) 6631. https://doi.org/10.1021/am5018072
  7. W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim and C.-Y. Kang: Sci. Rep., 5 (2015) 9309. https://doi.org/10.1038/srep09309
  8. A. F. Diaz and R. M. Felix-Navarro: J. Electrostat., 62 (2004) 277. https://doi.org/10.1016/j.elstat.2004.05.005
  9. N. Murayama, N. Izu, W. Shin and I. Matsubara: Journal Ceram. Soc. Japan, 113, (2005) 330. https://doi.org/10.2109/jcersj.113.330
  10. Y.-I. Lee and Y.-H. Choa: J. Korean Powder Metall. Inst., 19 (2012) 271 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.271
  11. T. Feng, A. K. Ghosh and C. Fishman: Appl. Phys. Lett., 35 (1979) 266. https://doi.org/10.1063/1.91095
  12. W.-S. Choi: Trans. Electr. Electron. Mater., 10 (2009) 200. https://doi.org/10.4313/TEEM.2009.10.6.200
  13. X. Du and S. M. George: Sens. Actuators B, 135 (2008) 152. https://doi.org/10.1016/j.snb.2008.08.015
  14. C. W. Cho, J. H. Lee, D. H. Riu and C. Y. Kim: Jpn. J. Appl. Phys., 51 (2012) 045001. https://doi.org/10.7567/JJAP.51.045001
  15. Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike and K. Natukawa: Sens. Actuators B, 79 (2001) 175. https://doi.org/10.1016/S0925-4005(01)00871-1
  16. Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang and T. H. Wang: Appl. Phys. Lett., 88 (2006) 083105. https://doi.org/10.1063/1.2166695
  17. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park and J.-H. Lee: Nanotechnology, 19 (2008) 095508. https://doi.org/10.1088/0957-4484/19/9/095508

Cited by

  1. Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition vol.13, pp.4, 2017, https://doi.org/10.1007/s13391-017-6289-0