• Title/Summary/Keyword: triangular fuzzy function

Search Result 59, Processing Time 0.036 seconds

Performance Improvement of Distributed FLC by Nonuniform Membership Functions (비균일 멤버쉽 함수를 이용한 분산 퍼지제어 성능 향상)

  • 박희경;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.37-40
    • /
    • 1997
  • This paper presents a performance improvement of distributed fuzzy control system by changing the triangular membership function widths according to the input variables. The control region consists of 4 parts according to the sign of error and change of error terms. Each control part is operated by the suitable nonuniform triangular membership function. Through the simulation for the boiler-turbin model of a fossil power plant using decentralized contol, it is verified this proposal

  • PDF

A Study on the Construction Method selecting scheme using Fuzzy Relative Preference Ratio method (퍼지 R.P.R(Relative Preference Ratio)기법을 이용한 건설프로젝트의 공법선정에 관한 연구)

  • Lee Dong-Un;Kim Kyung-Whal
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.143-150
    • /
    • 2004
  • Nowaday, The tendency of complexity and extension of construction fields increase the need for efficient works managements like a construction management. Consequently, by the introduction of Decision-Making Theories, researches for improving construction field's efficiencies are actively performed. Fuzzy Analytical Hierarchy Process method is invented, so that describes a decision maker's ambiguous linguistic judgment with fuzzy numbers. but most of researches on Fuzzy-AHP use symmetric triangular fuzzy function for estimating each evaluation item with the consequence that exact judgments are impossible. those limits are caused by the point that employed fuzzy ranking methods can not support dissymmetric fuzzy numbers. In this research, we aims to overcome this problem with R.P.R(Relative Preference Ratio) method and suggest improved Fuzzy-AHP method which can use dissymmetric fuzzy triangular numbers.

Relations among the multidimensional linear interpolation fuzzy reasoning , and neural networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Byoung-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.562-567
    • /
    • 1998
  • This paper examined the relations among the multidimensional linear interpolation(MDI) and fuzzy reasoning , and neural networks, and showed that an showed that an MDI is a special form of Tsukamoto's fuzzy reasoning and regularization networks in the perspective of fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a special Tsukamoto's membership (STM) systemand triangular basis function (TBF) networks, Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

A CANONICAL REPRESENTATION FOR THE SOLUTION OF FUZZY LINEAR SYSTEM AND FUZZY LINEAR PROGRAMMING PROBLEM

  • NEHI HASSAN MISHMAST;MALEKI HAMID REZA;MASHINCHI MASHAALAH
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.345-354
    • /
    • 2006
  • In this paper first, we find a canonical symmetrical trapezoidal(triangular) for the solution of the fuzzy linear system $A\tilde{x}=\tilde{b}$, where the elements in A and $\tilde{b}$ are crisp and arbitrary fuzzy numbers, respectively. Then, a model for fuzzy linear programming problem with fuzzy variables (FLPFV), in which, the right hand side of constraints are arbitrary numbers, and coefficients of the objective function and constraint matrix are regarded as crisp numbers, is discussed. A numerical procedure for calculating a canonical symmetrical trapezoidal representation for the solution of fuzzy linear system and the optimal solution of FLPFV, (if there exist) is proposed. Several examples illustrate these ideas.

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Nonlinear Analysis in Love Dynamics with Triangular Membership Function as External Force (삼각 퍼지 소속 함수를 외력으로 가진 사랑 동력학에서의 비선형 해석)

  • Bae, Young-Chul
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.217-224
    • /
    • 2017
  • Recently, we have been continued effort that chaotic theory apply into love model which is an area of social science. To make the chaotic behaviors in the differential equation that represent as Romeo and Juliet, we apply an external force to the differential equation. However, this external force have disadvantage that cannot exactly represent for emotion of human. In this paper, to solve these advantage, we introduce triangular fuzzy membership function to provide the external force that can describe most similar status for action and word of human in the love model of Romeo and Juliet. Also, to confirm the chaotic behaviors in the love model of Romeo and Juliet with proposed fuzzy membership function, we use time series and phase plane.

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF