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ABSTRACT

The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy model-
ing implements system structure and parameter identification in the efficient form of “IF---, THEN---"
statements, and exploits the theory of system optimization and fuzzy implication rules. The method for
rule-based fuzzy modeling concerns the form of the conclusion part of the the rules that can be con-
stant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on
an autotuning algorithm that covers as a modified constrained optimization method known as a com-
plex method. The study introduces a weighted performance index (objective function) that helps
achieve a sound balance between the quality of results produced for the training and testing set. This
methodology sheds light on the role and impact of different parameters of the model on its performance.
The study is illustrated with the aid of two representative numerical examples.

1. Introduction

In the early 1980, linguistic approach[1,2] and
fuzzy relationship equation-based approch[3,4] were
proposed as identification methods of fuzzy models.
In the linguistic approach, Tong identified gas
furnace process by means of logical examination of
data[7]. B. Li et al. obtained good results through the
modification of Tong's method[6] and also proposed
the modified algorithm of adaptive model based on
decision table. But the algorithm has some problems
due to the computer capacity and computation time
which is important, when it was applied to the high-
order multivariable systems[S]. Pedrycz analyzed the
identification of fuzzy system from the viewpoint of
using the
referential-fuzzy-set concept[2]. T. Li et al. presented

linguistic implication rule modeling,
a self-learning algorithm for the simple SISO fuzzy
model[S]. In the fuzzy relationship equation-based
approch, Pedrycz identified fuzzy ‘systems, using the
referential fuzzy set and Zadeh's
possibility distribution, that is, the new composition
rule which were made by the fuzzy relationship
equations[3]. Xu constructed and identified the fuzzy
relationship model using the referential fuzzy set
theory and the self-learning algorithm[5,6]. The direct

conditional
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inference utilized by two methods did not perform
better than the linear inference. Sugeno identified the
structure of systems through the standard least square
methods[10], but the structure of premises of the
rules was determined more heuristically through the
experience and iterative fuzzy partitioning of the
input space. Sugeno also applied his method to the
fuzzy identification of gas furnace process, using
fuzzy c-means clustering[11,12], but the method did
not produce the identification of good performance;
this could be alleviated to the use of direct linear
inference8].

In this paper, the simplified reasoning model is
considered. In the fuzzy inference, we consider three
types of membership functions, namely Gaussian
membership functions with modifiable or fixed slope,
and triangular membership functions. According to
the proposed autotuning algorithm-the improved
complex method, the parameters of such membership
function can be easily adjusted. Furthermore we
introduce an aggregate objective function that deals
with training data and testing data, and elaborate on
its optimization to produce a meaningful balance
between approximation and generalization abilities of
the model. The proposed ruled-based fuzzy modeling
is carried out for time series data for gas furnace
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process[9] and traffic route choice. The performance of
the proposed rule-based fuzzy modeling is presented
from the viewpoint of the identification errors.

2. System Modeling by Means
of Fuzzy Inference

The identification algorithm of fuzzy model is
divided into the identification activities of premise
and consequence parts of the rules. The identi-
fication at the premise level 1) selects the input
variables x;, x, x, of the rules, and 2)
determines the fuzzy partitions (Small, Large, etc.)
of fuzzy spaces. This means the determination of
the number of the optimal fuzzy space partitions,
that is, fuzzy subspaces that determine the number
of fuzzy implication rules. The
identification has to determine the membership
values of fuzzy variables. The consequence identi-
fication embraces the following phases 1) selection
of the consequence variables of the fuzzy impli-
cation rules, 2) determination of the consequence
parameters.

In this paper, in order to identify the premise
structure and parameters of fuzzy linguistic rules, two
essential input variables of process influenced are
considered and the improved complex method which
is a powerful auto-tuning algorithm is used. Fur-
thermore, we restrict ourselves to some types of
membership function such as Gaussian-like and
triangular ones. The parameters of the membership
functions are tuned with the help of the autotuning
method. The parameters of the consequence part of
the rules are determined using the standard least
square method (Gaussian elimination with maximal
pivoting algorithm). We also discuss a modified
performance index (objective function) that aims at
achieving a balance between approximation and
prediction capabilities of the fuzzy model.

premise

3. An Algorithm of Fuzzy Identification

In this section we elaborate on algorithmic details of
the identification method discussing the optimization
problem to the antecedent {condition part) of the rules as
well as an enhancements of their conclusions.

107

3.1 Premise Identification

In the premise part of the rules we confine ourselves
to Gaussian-like and triangular type function. This
though looks somewhat limited,
embraces a broad range of cases that could be
covered by modifying the parameters of these
functions. For the triangular membership functions
we have either 2 or 3 parameters, see Fig. 1, whose
points can be autotuned (adjusted). The Gaussian
type of the membership function assumes the form

selection, even
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Furthermore we consider Gaussian membership
functions involving fixed slope, and assume several
levels of their parametric flexibility such as

— fixed slope of the functions

— the slopes are modified but kept the same for all

the functions

—the slopes of the membership function can vary

and will be adjusted (optimized), refer to Fig. 2.

In the case of the same slope and different slope,
these mean the same and different slope in each
input variable, and the slope parameter of each case
is auto-tuned according to the proposed optimization.

3.2 Consequence ldentification

The identification of the conclusion parts of the the
rules deals with a selection of their structure and a
determination of parameters therein.

The consequence part of the simplified inference
mechanism where the rules have constant conclusion

LOwW

HIGH

Low HIGH

Fig. 1. Triangular membership function.
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The calculations of the numeric output of the
model are carried out in the well-known form,

y* =S pa /)= he,
i=1 i=1 i=]

where R’ is the i-th fuzzy rule, x; is input variables,
A; is a membership function of fuzzy sets, 4; is a
constant, n is the number of the fuzzy rules, y* is the
infered value, y; is the premise fitness matching of R
(activation level) and fi; is the normalized premise
fitness of R'. If the input variables of the premise and
parameters are given in consequence parameter
identification, the optimal consequence parameters
which minimize the assumed performance index can
be determined. In what follows, we define the
performance index as a sum of squared errors.

1 =(1/m)~Z:,(v(k)—)"’(k))2 @
where y° is the output of the fuzzy model, k denotes
the number of the input variables, and “m” stands for

the total number of data. Furthermore xy;, Xy, ***, Xu,

108

(3), the minimal value produced by the least-square
method is determined as follows.

i =T Xy'XTY @

Where x'=[uy;, -, ], a'=[as, -, aa], Y=y, -,
T]T

ym]T, E=[£1, ey E"']T, X=[x1T, c X

3.3 The Objective Function with Weighting Fac-
tor

We claborate on the performance index. The
objective function for the training data and testing
data assumes the form

f =(PARA1XPI +PARA2XE _PIy?2

and is utilized as a cost function of the fuzzy model.
Where, PARA1 and PARA2 are two weighting factors
for PI and E_PI, respectively. PI and E_PI denote
the values of the performance index for the training
data and testing data, respectively. For the purpose of
minimization of this objective function, all
parameters of the premise membership functions such
as Gaussian-like and triangular function are modified
(optimized).

Depending upon the values of the weighting factor,
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let us discuss several specific cases of the objective
function.

1) If PARA1=1 and PARA2=0 then the model
becomes optimized based on the training set. No
testing set is not taken into consideration.

2) Both PARA1=1 and PARA2=1 is the case the
training and testing data set arc taken into account.

3) The case both PARAl=a and PARA2=1-a
where o=[0, 1] embraces both the cases stated
above. The choice of establishes a certain tradeoff
between the approximation and generalization aspects
of the fuzzy model.

4) In general, PARA1 and PARA2 can be selected
and adjusted independently.

The performance index used in the ensuing
numerical experiment will be as an Euclidean and
Hamming distances, that is,

=130, -5y ©)
N £ i i
N

PI =Zl)’i %1 ©
i=1

The variables of a cost function to be optimized
come as the parameters of the membership functions,
fuzzy rules, and weighting factors of the performance
index. Based upon a selection of sound fuzzy
reasoning type, specification of the membership
function type, and weighting factors we can design
an optimal fuzzy model.

3.4 Autotuning by Improved Complex Method

Usually, by combining these optimization tasks we
end up with a problem that is highly nonlinear and
may not fit well to the domain of gradient-based
techniques. To alleviate the problem, we propose to
use an autotuning algorithm that is an adaptation of
the improved complex method.

We realize the algorithm by augmenting the simplex
concept to the complex method [2] - constrained
optimization technique. The proposed optimal autotuning
algorithm known as the improved complex method, is
the constrained complex method of the form:

Minimize fx)
Subject to g,(x)< 0, j=1,2, -, m

xO<x, <x® i=1,2,-,n
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where the superscripts [ and u denote the lower and
upper bound of the corresponding variable.

<step 1>

The parameters to be optimized include the
elements of the fuzzy model. They include the slope
and center parameter of Gaussian type membership
function, and each parameter (a and b) of the
triangular membership function. They are defined as
X=(xi, x5, -, xkh k=1, 2, -
form the points in an “n" dimensional space. In
general, the value of “m” is selected as being equal
2n (where 7 is the number of the initial vertices).

<step 2>

The initial values of a, y and f is specified using
the Reflection, Expansion and Contraction of simplex
concept as follows:

n, n+l, ---, m) and

i) Reflection: X, =X, + (X, — X,,) )
ii) Expansion: X, =X, +¥X; - X,) ®
iii) Contraction: X, =X, + f(X, —Xo) ®)

<step 3>

X, and X, are the vertices corresponding to the
maximum function value f{X,) and the minimum
function value fX)). X, is the centroid of all the
points X; except i=h. The reflection point X, is given
by (7), with X,=max X)), (i=1, ---, k), Xo=(1/(m-1))
(Z-" X)-X;) and e=|X,-X,|/||X)-X.|.

If X, may not satisfy the constraints, a new point
X, is generated by X,=(X,+X,)/2. This process is
repeated until X, satisfies the constraints. A new
simplex is started.

<step 4>

If a reflection process gives a point X, for which
f(X)<fiX), i.e. if the reflection produces a new
minimum, we expand X, to X, by (8), with 1={IX.-X||/
- ||>1.

If X, does not satisfy the constraints, a new point
X, is generated by X.=(X;+X.)/2. This process is
repeated until X, satisfies the constraints. If fX.)<fX),
we replace the point X, by X, and restart the process
of reflection. On the other hand, if AX.)>fX)), we
replace the point X, by X,, and start the reflection
process again.

<step 5>

If the reflection process produces a point X, for
which fX)>fUX)), for all i except i=h. and f{X,)<f(X,),
then we replace the point X, by X,. In this case, we
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contract the simplex as in (9), with B=|XC-X|/[IX-X.-

If f(X,)>f(X,), we use X, without changing the
If X. does not satisfy the
constraints, a new point X, is generated with X =(X,+
X.)/2. This process is conducted repeatedly until X,
satisfies the constraints. If the contraction process
produces a point X, for which AX.)<min[fX,), AX.)],
we replace the point X; by X.. and proceed with the
reflection again. On the other hand, if AX)>=min[f
(X.), X))}, we replace all X; by (X;+X;)/2, and start
the reflection process again.

<step 6>

The method
whenever the standard deviation of the function at

previous point X,

is assumed to have converged
the vertices of the current simplex is smaller than
some prescribed small quantity as £ follows:

12
n+. Y— " 2
0= i[f(X,) f&Xo)]

< 10
n+1 € (10)

i=1
If Q may not satisfy (10), we go to step 3.
4. Experimental Studies

Once the identification methodology has been esta-
blished, one can proceed with intensive experimental
studies. In this section, we report on the experiments
using some well-known data sets used in fuzzy
modeling. These include gas furnace data and traffic
control data.

4.1 Gas Furnace Process
In this section, the proposed rule-based fuzzy

1)
b4

Fig. 3. Data points induced by I/O data set (u(t-1), y(z-1),
y@)-
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modeling is applied to the time series data of gas
furnace utilized by Box and Jenkins[9]. We try to
model the gas furnace using 296 pairs of input-
output data. The flow rate of metane gas, U,(t) used
in laboratory changes from -2.5 to 2.5, the control U
(f) used in real process, ranges from 0.5 to 0.7
following the expression.

U(t)=0.60—0.048 Un(t) (11)

U denotes the flow rate of methane as input, the
output stands for the carbon dioxide density i.e., the
outlet gas.

The structure and parameter identification of
premise are performed using the improved complex
method. The improved complex method extracts the
optimal fuzzy rules and upgrades the performance by
auto-tuning parameters of premise membership
function. The reflection, expansion and contraction
coefficients which are the initial parameters of the
improved complex method are set as o=1, ¥=2 and f=
0.5, respectively. The consequence parts of two kinds
of types are used. Table 1 shows the performance

¥(+-1)

Fig. 4. Data points induced by /O data set (u(t-2), y(+-1),

).
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Fig. 5. Data points induced by /O data set (u(t-3), y(z-1),
y@).
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index of the optimal rules obtained using the
improved complex method for each fuzzy model linear inference, and the premise types of Gaussian
consisted of the consequence types of simplified and type function with fixed slope, same slope and

Table 1. Optimal performance index for the fuzzy model by means of the adjustment of weighting factors
(a) Simplified fuzzy reasoning method with Gaussian type membership function

Weighting "~ Premis : DIFFERENT
Model Model Name &  Factor " Structure I“IE“N‘:":;""' P(‘;; FIXED SLOPE SAME SLOPE = °bo

sequence
No. MoofDan  (PARAL gnonre (GO, jpu MxN) Rue " p BRI PP EP P EP

1 GAS(145+145) 10  Simplified Gausian u(t3)y(t1)2x2 4 0023 0337 0022 033 002 0334
2 GAS(145+145) 11 Simplified Gaussian u(t3)y(-1)2x2 4 0036 0274 0035 0275 0038 0278
3 GAS(145+145) 13 Simplified Gaussian u(-3)y(-)2x2 4 0044 0269 0044 0270 0052 0271
4 GAS(145+145) 15  Simplified Gaussian u(t3)y(t1)2x2 4 0048 0268 0049 0269 0049 0271
5 GAS(145+145) 110  Simplificd Gaussian u(t3)y(-12x2 4 0095 0262 0055 0267 0059 0269
6  GAS(145+145) 130  Simplified Gaussian u(t-3)y(+-1)2x2 4 0121 0260 0058 0269 0079 0252
7 GAS(145+145) 150  Simplified Gaussian u(t-3)y(t-1)2x2 4 0125 0260 0073 0266 0063 0262
8  GAS(145+145) 31  Simplified Gaussian u(t3)y(-12x2 4 0027 0289 0027 0291 0028 0278
9 GAS(145+145) 51  Simplified Gaussian u(t3)yC-1)2x2 4 0025 0303 0025 0302 0025 0306
10 GAS(145+145) 10,1  Simplified Gaussian u(t3)y(t1)2x2 4 0023 0313 002 0332 0023 0320
11 GAS(145+145) 30,1  Simplifid Gaussian u(t3)y(-1)2x2 4 0023 0325 0022 0333 002 0331
12 GAS(145+145) 50,1  Simplified Gaussian u(t3)y(-1)2x2 4 0023 0330 0022 033 002 0334

(b) Simplified fuzzy reasoning method with triangular type membership function
Input Variable

Model Model Name Weighting Factor  Consequence  Premise Structure No. of

No. & No. of Data (PAIS;L PARAY)  Stactre (Gauss, Tria) & N& )‘(’fN;“P“t rRee O EF
1 GAS(145+145) 1,0 Simplified ~ Triangular  u(t-3)y(-1),2x2 4 0022 0335
2 GAS(145+145) 1,1 Simplified  Triangular  u(t-3)y(t-1)2x2 4 0024 0328
3 GAS(145+145) 1,3 Simplified Triangular u(t-3),y(t-1),2x 2 4 0.055 0.316
4 GAS(145+145) 1,5 Simplified  Triangular  u(t-3)y(t-1)2X2 4 0085 0.308
5  GAS(145+145) 1,10 Simplified ~ Triangular  u(t-3)y(+-1),2x2 4 0095 0.307
6  GAS(145+145) 1,30 Simplified  Triangular  u(t-3)y(t-1)2x2 4 0108 0.306
7 GAS(145+145) 1,50 Simplified ~ Triangular  u(t-3)y(t-1)2x2 4 0112 0306
8  GAS(145+145) 3,1 Simplified  Triangular  u(t-3)y(t-1)2x2 4 0023 0331
9 GAS(145+145) 51 Simplified  Triangular  u(t-3)y(t-1)2x2 4 0023 0331
10 GAS(145+145) 10,1 Simplified ~ Triangular  u(t-3)y(t-1),2x2 4 0022 0334
11 GAS(145+145) 30,1 Simplificd  Triangular  u(t-3)y(t1),2x2 4 00228 0335
12 GAS(145+145) 50,1 Simplified  Triangular  u(t-3)y(t1),2x2 4 0.0228 0335
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Table 2. Performance index in the fuzzy reasoning method by means of the change of no. of fuzzy variables

(a) Simplified fuzzy reasoning method with input variables u(t-3) and y(t-1)

u(t-3): No. of Fuzzy variables

2 3 4 5 6
PI. EPI PI EPI Pl EPI PI EPI Pl EPI
(1) Gaussian (fixed-slope) 0.036 0274 0.040 0.252 0.092 0215 0.038 0.261 0.034 0.272
1}\110. 0} Gaussian (same-slope) 0.035 0275 0.040 0252 0.092 0213 0.037 0.261 0.032 0.267
F“th)i’ Gaussian (different-slope) 0.038 0.276 0.040 0.252 0.092 0.213 0.037 0.259 0.036 0.262
es
vana Triangular 0.024 0328 0.022 0333 0.022 0332 0021 0.327 0.021 0.330
(b) Simplified fuzzy reasoning method with input variables u(t-4) and y(t-1)
u(t-4): No. of Fuzzy variables
2 3 4
PI E_PI PI E PI PI E_PI
y(t-1): No. Gaussian (fixed-slope) 0.090 0.265 0.093 0.208 0.039 0.257
F\f;y 2 Gaussian (same-slope) 0.092 0.266 0.093 0.208 0.037 0.260
variables Gaussian (different-slope) 0.101 0.259 0.093 0.209 0.037 0.260
62 T T 0.35 T T T T
E, 0.3 E\'\ EPl 1
8 x
56 i §0.25 o
s 02
&
50 - go1s |
£
& 0.1
: . 0.05 L\ "
“ 50 100 150
Time 00 100 200 300 400 500
(a) In the case of training data Iteration
I . ; Fig. 9. Convergence procedure to optimal value of PI &
_— E_PI for fuzy model No. 2 (Table 1-a).
F
£
o s
s than any other data set. Therefore we can anticipate
54 that the fuzzy model structure for the fuzzy partition
2 of data set (u(s-3), y(:-1), y(©)) and (u(:-4), y(-1), ¥(1))
% could perform a little better than in the remaining
“ = pre P sceneries.
Time
(b) In the case of testing data .
Fig. 8. The comparison of original data and output data 4.2 Traffic Route Choice Process

for fuzzy model No. 2 (Table 1a).

different slope versions, and triangular type function.
From the two-dimensional plot of the data set shown
in Fig. 3~7, in the case of the training data, the data
sets (u(t-3), y(-1), y(@) and (u(z-4), y(r1), y(®)
exhibit more uniform and less sparse distribution
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Lately, researchers and officials who work in the
field of ftraffic planning and engineering have
expressed a lot of interest about the assignment of
traffic load in road network. From 1950s, many
highways have been planned and constructed for
transportation of men and materials due to the
economic development of the advanced industrial
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T T T T
16
1 Max point
3
it
2
3, I
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Min point
0.
02} ~— + + t
0 100 200 300 400 500
Ieration
(@) In the case of (Umin(t-3), Upu(t-3))
140 v T y T
a120 | had
i Max. polst
% 100 | +
5 s
il
40 ;’ru-’- Mim. polut i
2% 100 200 300 400 500
Iteration

(b) In the case Of (Vminl(t-1), Yuul(t-1))

Fig. 10. Convergence procedure to optimal value of max-
imal and minimal point of input fuzzy memb-
ership functions, (Up(f-3), Upu(t-3)) and (Vou(t-
1), Ymax(t-1)) for fuzzy model No. 2 (Table 1a).

nations such as United State, Europe and Japan. It
has triggered an important issue on how to assign
traffic load and set up effectively the harmonious
transportation system from two roads or a few roads
all being in a competitive relationship. To solve such
problems, lots of research is being carried out to get
the optimal model of traffic transition and traffic
route related to the traffic planning.

The selection of a certain traffic route is an
example of a complex driver's decision making.
Ambiguity (or fuzziness) inherently associated with
traffic route problem exhibits the implicit meaning
such as (1) Ambiguity of model's input data (2)
Fuzziness of human cognition (3) Ambiguity of
human decision making.

The usage of the knowledge data based on infor-
mation mentioned above, modeling method was
proposed to make traffic route choice model[15].
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Generally, almost of these methods perform modeling
from valid infomations which are obtained by
human's knowledge. This method is dJiffereni from
some other modeling methods which are primarily
based upon statistical approches.

We can think of many cases of route choice model.
But, we confine our interest to assignment problem
between road network and rail system or route choice
problem between road and highway. As shown
below, Fig. 11 illustrates a simple example of a route
structure from O to D. Even though we can consider
various types of cost related to many decision
criterion for evaluation about each route for
generalization, in this paper, we consider just time
cost and traffic cost as the essential components of
the objective function.

We consider simple problem related to traffic route
choice which is based on two routes mentioned
above. The model was considered as conventional
example for traffic route choice model[14]. Then, we
assume that the object for traffic routes is driver and
our interest is focused on how to express traffic
behavior at the individual level. The performance
index is defined as shown in Eq. (6). The inputs T1
and T2 denote a traffic and time cost associated with
route 1 and route 2, respectively. The output Py, is
choice probability ratio of route 1.

The performance index of each model is compared
with other fuzzy modeling methods and the results

Fig. 11. Simple Example of Route Choice.

route 1

route 2

Table 3. Example Data For Logit Model

No route TI1 T2 No route T1 T2
1 2 529 4.4 12 1 185 84.0
2 2 41 285 13 1 82.0 38.0
3 1 41 869 14 2 86 1.6
4 2 56.2 31.6 15 1 225 741
5 2 518 202 16 1 514 838
6 1 02 912 17 2 810 192
7 1 276 79.7 18 1 51.0 85.0
8 2 899 22 19 1 62.2 90.1
9 2 415 245 20 2 951 222

10 2 950 435 21 1 416 915

11 2 991 84
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Table 4. Optimal performance index for the fuzzy model by means of the adjustment

(2) Simplified fuzzy reasoning method with Gaussian type membership function

of weighting factors

Weightin, Premise .
M Uit G, it % o sore s store DT
No. (PARAL, (Gauss,,
of Data  pipay Smewre  Cpoy ptMxN) Rde pp ppr pp EPL PI EPI
1 TR(16+16) 1,1 Simplified Gaussian 2X%2 4 1.69 8633 1.71 871 1.690 8.655
2 TR(16+16) 1,3 Simplified Gaussian 2X2 4 1712 8.685 150 750 1.691 8.657
3 TR(16+16) 1,5 Simplified Gaussian 2x2 4 2296 8214 155 750 1.704 8.657
4  TR(16+16) 1,10 Simplified Gaussian 2%x2 4 1712 8685 136 7.02 4.037 6.830
5  TR(16+16) 1,30 Simplified Gaussian 2x2 4 1712 8685 139 7.05 3.925 6.892
6  TR(16+16) 1,50 Simplified Gaussian 2x2 4 1712 8685 135 7.01 3.934 6918
7  TR(16+16) 3,1 Simplified Gaussian 2x2 4 1696 8663 171 871 1.689 8.655
8  TR(16+16) 51 Simplified Gaussian 2x2 4 169 8663 150 750 1.706 8.721
9  TR(16+16) 10,1 Simplified Gaussian 2x2 4 1664 9031 105 9.87 1.657 9.227
10  TR(16+16) 30,1 Simplified Gaussian 2Xx2 4 1469 9.696 133 7.00 1.651 9.312
11 TR(16+416) 50,1 Simplified Gaussian 2x2 4 1491 9753 150 7.58 1.650 9.325
(b) Simplified fuzzy reasoning method with triangular type membership function
Model Model Name w;;gcl:::lg Consequence Sl::xmctﬁree Input Variable & No. Pl E Pl
No. & No. of Data (PARAL, PARA2) Structure (Gass,, Tria) No. of Input (MXN) of Rule -
1 TRAF(16+16) 1,0 Simplified  Triangular 2x2 4 1408  9.744
2 TRAF(16+16) 1,1 Simplified  Triangular 2x2 4 1768  8.709
3 TRAF(16+16) 1,3 Simplified  Triangular 2x2 4 1768  8.709
4 TRAF(16+16) 1,5 Simplified  Triangular 2x2 4 1.768  8.709
5 TRAF(16+16) 1,10 Simplified  Triangular 2x2 4 2170 9.659
6 TRAF(16+16) 1,30 Simplified  Triangular 2x2 4 2442 9642
7 TRAF(16+16) 1,50 Simplified  Triangular 2%2 4 2442 9.642
8 TRAF(16+16) 31 Simplified  Triangular 2x2 4 1427  9.616
9 TRAF(16+16) 51 Simplified  Triangular 2x2 4 1427  9.617
10 TRAF(16+16) 10,1 Simplifiecd  Triangular 2x2 4 1422 9626
11  TRAF(16+16) 30,1 Simplified  Triangular 2%2 4 1395 9713
12 TRAF(16+16) 50,1 Simplified  Triangular 2x2 4 1406  9.652
13 TRAF(16+16) 1,1 Simplified  Triangular 3x2 6 1.631 8551
14 TRAF(16+16) 11 Simplified  Triangular 4x2 8 1.605  7.855
15  TRAF(16+16) 1,1 Simplified  Triangular 3x3 9 1.690  8.534
16  TRAF(16+16) 1,1 Simplified  Triangular 5%2 10 1144 9.746

are summarized in Table 6. This comparison reveals
that performance index for the training data only; the
testing data are not studied. In other words, the
weighting factors assume the values PARA1=1 and

PARA2=0, respectively.

The analysis of the experimental data allows us to

draw some general conclusions:

4.2.1 Gas Furnace Process

The most suitable design option is to optimize the
second weighting parameter (PARA2) of the objective
function and use the the Gaussian membership

function. As Table 2 reveals, the increase in the

improves the performance of the model.
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Table 5. Performance index in the simplified fuzzy reasoning method by means of the change of no. of fuzzy variables

T1: No. of Fuzzy variables

2 3 4
PI E Pl PI E_PI PI E _PI
Gaussian (fixed-slope) 1.696 8.663 1.585 8.540 1.383 7.129
) Gaussian (same-slope) 1.710 8.710 1361 7.030 1357 7.020
Gaussian (different-slope)  1.690 8.655 1.488 7.254 1.422 7.107
Triangular 1.768 8.709 1.631 8.551 1.605 7.855
Gaussian (fixed-slope) 1.913 8.682 0.751 7.977 0.114 7314
'If‘ZF No. 3 Gaussian (same-slope) 0.00009 7.000 0.002 7.003 0.107 7.305
of Fuzzy
variables Gaussian (different-slope)  0.028 7.207 0.009 7.028 0.164 7.245
Triangular 1.466 9.587 1.690 8.533
Gaussian (fixed-slope) 1.626 8.388 0.098 8.629 0.0011 7.333
4 Gaussian (same-slope) 0.000004  7.993 0.002 7.039 0.0002 7.351
Gaussian (different-slope)  0.00002 7.998 0.046 7.261 0.0003 7.570
Triangular 1.603 8.792 1.179 8.797
o : Real data 10 e
* : Model output E PI
1 \.
¥ 8f
0.8 z
X 8
8 6+
o ;
3
B g
Eoa &
P1 )
2 p———
0.2
0o 50 100 150
00 5 10 15 20 Iteration

No. of the case of route choice

(a) In the case of the training data

o : Real data
* : Model output

5

10
No. of the case of route choice

(b) In the case of the testing data

Fig. 12. The comparison of original data and output data
for fuzzy model No. 1 (Table 4a).

The optimal fuzzy rules obtained from model 6
with different slope in Table 1 are as follows
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Fig. 13. Convergence procedure to optimal value of PI &
E_PI for fuzzy model No. 1 (Table 4a).

R': If u(t-3) is Small, & y(t-1) is Smalb, then Y(=a,

R*: 1f u(t-3) is Small, & y(1-1) is Big,, then y(f)=a,

R*: If u(e-3) is Bigy & y(t-1) is Small,, then y(f)=a,

R*: If u(t-3) is Big, & y(t-1) is Big,, then y()=a,

The and final tuned values of each
parameter associated with the fuzzy rules mentioned
above are like Table 7. Those values of Gaussian
membership functions of fuzzy input variables are
shown as Fig. 15. The dotted line in Fig. 15
represents the final tuned values.

4.2.2 Traffic Route Choice Process

As mentioned in gas furnace and sewage treatment
process, the quantity and sparse distribution of data
set affect the structure of the optimal fuzzy model
such as the reasoning method, of

initial

number
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0.256 - . Table 6. Comparison of identifiction error with previous
models
o Shootin
- ooting
; 0.245 Model Type PI ratio (%)
£ o024 1) BL (Binary Logit) model
g [14] 5.452 90.4
§o7% 2) PS (Production System)
p
023 model[15] 20 85.7
0.225L ) vy Ts0 3) Neural networks model{15]  0.497 95.2
Iteration 4) Fuzzy neural networks
(a) In the case of Tlun ) model[15] 1.178 90.4
240 — Gaussian
220 (Exedslope) 0.000002 99.9
£ 200 Gaussian
% 180 Proposed (same-slope) 0.000001 999
k] model ~
& 160 Gaussian 0000001 999
§ 140 (different-slope) ) ’
120 Triangular 0.01 99.7
100
8% 50 100 150 ) )
Iteration The optimal fuzzy rules obtained from model 4
(b) In the case of Tlmax with different slope in Table 4(a) are as follows.
100 x -

R': If T1 is Small, & T2 is Small,, then route=a,

R: If T1 is Small, & T2 is Big,, then route=a,

R if T1 is Big, & T2 is Small,, then route=a;

R*: If T1 is Big, & T2 is Big,, then route=a,

The initial and final tuned values of each
parameter associated with the fuzzy rules mentioned
above are like Table 8. Those values of Gaussian
& == 55 T80 membership functions of fuzzy input variables are

Reration shown as Fig. 16.

() In the case of (TZrmin, T2max) Again, as in the previous experiments we worked
Fig. 14. Convergence procedure to optimal value of max-

) - P ; ; with various optimization, scenaries utilizing all
imal and minimal point of input fuzzy memb-
ership functions, (71, Tln.,) and (124, 72,.,) parameters.
for fuzzy model No. 1 (Table 4a). When we apply three types of Gaussian functions
and triangular function to premise structure as the
membership function of input fuzzy variables and  membership function of fuzzy input variables, we

membership function type. can compare and analyze the characteristics and the

80t

60t

40}

Min. & Max. point of T2

20

Table 7. The initial & final tuned values of the membership functions of the premise fuzzy variables, consequence
parameters, and performance index

Premise parameter Consequence parameter Perf;g::ncc
Small Bj; Small Bi;
! & 2 £ a s 8 a Pl EPI
a b s a b ] a b s a b s

Initial value 0.431 0.166 2.7 0707 0166 27 4525 1080 08 6320 1080 0.8 4491 5887 4781 61.91 0204 0392

53:‘12 tuned 0464 0.187 001 0776 0.187 001 3968 2293 123 7775 2293 123 -3582 1700 4548 -341 0.079 0252
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Seteennnn..
.

ese®
_" Big’

Membership
° °
-~ [ )
T T

o 0.2 0.4 0.8 0.8 1
u(t-3)
(a) In the case of membership function of
fuzzy variable u(t-3)

Membership
[d o
[ 3 »

o
>

° 80 100
y(t-1)
(b) In the case of membership function of
fuzzv variable y(t-1)
Fig. 15. The initial and final tuned values of Gaussian-
like membership functions for model 6 with dif-
ferent slope in Table 1a.

output performance of fuzzy model according to each
process. As shown in the Table 1~2 and 4~5, the
output performance index for testing data in the case
of Gaussian membership function is better than that
produced in the case of triangular membership
function.

By increasing the number of the membership
functions in each of input fuzzy variables, in the
simplified inference method we can find the
optimal fuzzy model with better output performance
for both training data and testing data. From the

0.8+

04

Membership

1
(a) In the case of membership functions of fuzzy variable T1

1 - -
\. o= ..
08} Small
‘ﬁ' . . o
s oel . *
‘E . o\ o
- b . .
304 e D R
02} . <\
kN 3 kN,
296 -100 ) 100 200

(b) In the case of membership functions of fuzzy variable T2

Fig. 16. The initial and final tuned values of Gaussian-
like membership functions for model 4 with dif-
ferent slope in Table 4a.

observation and characteristic analysis of fuzzy
inference method, type of membership functions,
no. of membership function of fuzzy input variables,
and the weighting factors of the objective function
shown in this paper, it is available and feasible to
design the optimal fuzzy model structure with
better performance output.

5. Conclusions

In this paper, the efficient identification technique
is presented which automatically extract the optimal
fuzzy rules, using a auto-tuning algorithm and the

Table 8. The initial & final tuned value of the membership functions of the premise fuzzy variables, consequence

parameters, and performance index

Premise parameter Consequence parameter Pcrg)lg]e]:nce
Small Bi Small Bi
1 - - - 3, a, a3 a, PI E_PI
a b S a b s a b s a b s

Initial value 0.25 5454 090 90.79 5454 0.90

1.56 5881 150 99.19 58.81

1.50 -0.132 1.063 0.036 1.097 1.78 9.64

Final tuned 059 7925 775 1321 7925 7.75 2119 7097 1814 139.0 70.97 18.14 0.180 1075 0246 -4.142 403 6.83

value
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The
improved complex method, which is a powerful auto-

weighting factors of objective function.
tuning, is used for auto-tuning of parameters of the
premise membership functions in consideration of the
overall structure of fuzzy rules. The simplified fuzzy
reasoning method is used and we consider three
types of Gaussian membership functions such as
fixed, same slope and different slope, and triangular
membership function. By means of the adjustment of
weighting factors of objective function for both
training and testing data, and the auto-tuning of the
parameters of each membership function, we can get
better performance of fuzzy model. According to the
increase of no. of membership function of each input
variable of process the PI
(Performance Index) for fuzzy model using training
data is improved, but the PI for fuzzy model using
In comparison of the
performance of fuzzy model of Gaussian type

system, generally

testing data gets worse.

membership function with fixed slope, same slope,
and different slope, it depends on no. of data, a
certain degree of nonlinearity and weighting factor as
shown in previous section. Generally, in the case of
same-slope, we can get better performance.
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