• 제목/요약/키워드: transparent conducting electrode

검색결과 125건 처리시간 0.035초

PDMS 굴절 조정층이 Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO 투명전극의 특성에 미치는 영향 (Effect of PDMS Index Matching Layer on Characteristics of Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO Transparent Electrode)

  • 조영수;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.408-411
    • /
    • 2018
  • We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

RF/DC 마그네트론 스퍼터로 제조한 NiInZnO/Ag/NiInZnO 다층박막의 Ag 금속 삽입층 두께 변화에 따른 특성 연구 (A Study on the Characteristics of NiInZnO/Ag/NiInZnO Multilayer Thin Films Deposited by RF/DC Magnetron Sputter According to the Thickness of Ag Insertion Layer)

  • 김남호;김은미;허기석;여인선
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2014-2018
    • /
    • 2016
  • Transparent, conductive electrode films, showing the particular characteristics of good conductivity and high transparency, are of considerable research interest because of their potential for use in opto-electronic applications, such as smart window, photovoltaic cells and flat panel displays. Multilayer transparent electrodes, having a much lower electrical resistance than widely-used transparent conducting oxide electrodes, were prepared by using RF/DC magnetron sputtering system. The multilayer structure consisted of three layers, [NiInZnO(NIZO)/Ag/NIZO]. The optical and electrical properties of the multilayered NIZO/Ag/NIZO structure were investigated in relation to the thickness of each layer. The optical and electrical characteristics of multilayer structures have been investigated as a function of the Ag and NIZO film thickness. High-quality transparent conductive films have been obtained, with sheet resistance of $9.8{\Omega}/sq$ for Ag film thickness of 8 nm. Also the multilayer films of inserted Ag 8 nm thickness showed a high optical transmittance above 93% in the visible range. The electrical and optical properties of the new multilayer films were mainly dependent on the thickness of Ag insertion layer.

PET 기판 위에 증착된 ZnO:Al 투명 전도막의 전기적 특성에 미치는 바이어스전압의 효과 (Effective of bias voltage as electrical property of ZnO:Al transparent conducting films on polyethylen terephthalate substrate)

  • 박병욱;;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1260-1261
    • /
    • 2008
  • Aluminium doped zinc oxide (ZnO:Al) thin film has emerged as one of the most promising transparent conducting electrode in flat panel displays(FPD) and in photovoltaic devices since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r.f. magnetron sputtering method. Wide ranges of bias voltage, -30V${\sim}$45V, was applied to the growing films as an additional energy instead of substrate heating, and the effect of positive and negative bias on the film structure and electrical properties of ZnO:Al films was studied and discussed. The results showed that a bias applied to the substrate during sputtering contributed to the improvement of electrical properties of the film by attracting ions and electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO film on the substrate, resulting in significant variations in film structure and electrical properties. The film deposited on the PET substrate at r. f. discharge power of 200 W showed the minimum resistivity of about $2.4{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 87%.

  • PDF

F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상 (Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration)

  • 장수영;장준성;조은애;;김지훈;문종하;김진혁
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.150-155
    • /
    • 2021
  • Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 ℃. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.

Top Emission OLED를 위한 ITO 박막 특성에 대한 연구 (A Study on the Characteristics of ITO Thin Film for Top Emission OLED)

  • 김동섭;신상훈;조민주;최동훈;김태근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과 (Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate)

  • 곽동주
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.78-84
    • /
    • 2009
  • 본 연구에서는 ZnO:Al 박막의 필름형 염료감응 태양전지의 투명전도막으로의 웅용 가능성을 연구하기 위하여 PET 기판 위에 r. f. 마그네트론 스퍼터링법으로 ZnO:Al 박막을 증착하였으며, ZnO:Al 박막의 전기적 그리고 광학적 특성의 향상을 위하여 기판 바이어스 전압을 인가하였다. 그 결과, 정(+)의 기판 바이어스 전압은 플라즈마 중의 전자를 기판의 스퍼터 원자에 충돌하게 함으로써 박막에 부가적인 에너지를 공급하게 되어 박막의 결정성장 및 전기적 특성을 향상시키고 있음을 알 수 있었다. 그러나 +30[V] 이상의 과도한 기판 바이어스 전압을 인가한 경우, 박막의 전기적 특성은 나빠졌으며, 특히 부(-)의 바이어스 전압을 인가한 경우 결정 성장이 나타나지 알아, 전기적 특성의 향상을 위한 기판 바이어스 전압의 효과가 매우 제한적으로 작용되고 있음을 알 수 있었다. 본 연구에서는 +30(V)의 기판 바이어스 조건하에서 $1.8{\times}10^{-3}[{\Omega}-cm]$의 체적 저항율 및 87.77(%)의 광 투과율을 얻을 수 있었다.

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

수소화된 비정질규소 박막트랜지스터의 누설전류 (Leakage Current of Hydrogenated Amorphous Silicon Thin-Film Transistors)

  • 이호년
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.738-742
    • /
    • 2007
  • 능동형 평판디스플레이 소자를 제작하기 위해 수소화된 비정질 규소 박막트랜지스터 (a-Si:H TFT)의 상부에 화소전극을 형성하는 과정에 따른 TFT의 특성 변화를 연구하였다. 화소전극 형성 전에 1 pA 수준의 오프상태 전류 및 $10^6$ 이상의 스위칭률을 보이던 TFT에 화소전극 공정을 행하면 오프상태 전류가 10 pA 이상으로 증가하여 소자특성이 악화되었다. 이러한 소자특성의 악화는 SiNx 보호막 표면의 플라즈마 처리로 개선될 수 있었는데, 특히 $N_2$ 플라즈마가 좋은 결과를 보였다. 화소전극 공정에 의해서 누설전류가 증가하는 것은 투명전도막 증착공정 중에 SiNx 보호막 표면에 전하가 축적되어 이에 유도되는 백채널의 캐리어 축적에 기인하는 것으로 추정된다.

  • PDF

Effect of the Cu Bottom Layer on the Properties of Ga Doped ZnO Thin Films

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.185-187
    • /
    • 2012
  • Ga doped ZnO (GZO)/copper (Cu) bi-layered film was deposited on glass substrate by RF and DC magnetron sputtering and then the effect of the Cu bottom layer on the optical, electrical and structural properties of GZO films were considered. As-deposited 100 nm thick GZO films had an optical transmittance of 82% in the visible wavelength region and a sheet resistance of 4139 ${\Omega}/{\Box}$, while the GZO/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. GZO films with 5 nm thick Cu film show the lower sheet resistance of 268 ${\Omega}/{\Box}$ and an optical transmittance of 65% due to increased optical absorption by the Cu metallic bottom layer. Based on the figure of merit, it can be concluded that the thin Cu bottom layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.