Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.4.185

Effect of the Cu Bottom Layer on the Properties of Ga Doped ZnO Thin Films  

Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.4, 2012 , pp. 185-187 More about this Journal
Abstract
Ga doped ZnO (GZO)/copper (Cu) bi-layered film was deposited on glass substrate by RF and DC magnetron sputtering and then the effect of the Cu bottom layer on the optical, electrical and structural properties of GZO films were considered. As-deposited 100 nm thick GZO films had an optical transmittance of 82% in the visible wavelength region and a sheet resistance of 4139 ${\Omega}/{\Box}$, while the GZO/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. GZO films with 5 nm thick Cu film show the lower sheet resistance of 268 ${\Omega}/{\Box}$ and an optical transmittance of 65% due to increased optical absorption by the Cu metallic bottom layer. Based on the figure of merit, it can be concluded that the thin Cu bottom layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.
Keywords
GZO; Cu; Thin film; Magnetron sputtering; Surface roughness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Huang, D. Chen, C. Hsu, Ceramics International 38, 1057 (2012) [DOI: dx.doi.org/10.1016/j.ceramint.2011.08.031].   DOI   ScienceOn
2 U. Betz, M. Olsson, J. Martly, M. Escola, Surf. Coat. Technol. 200, 5751 (2006) [DOI: dx.doi.org/10.1016/j.surfcoat.2005.08.144].   DOI   ScienceOn
3 C. Guillen, J. Herrero, Vacuum 80, 615 (2006) [DOI: dx.doi. org/10.1016/j.vacuum.2005.10.006].   DOI   ScienceOn
4 D. Kim, Appl. Surf. Sci. 218, 71 (2003) [DOI: dx.doi.org/10.1016/S0169-4332(03)00542-7].   DOI   ScienceOn
5 K. Maki, N. Komiya, A. Suzuki, Thin Solid Films 445, 224 (2003) [DOI: dx.doi.org/10.1016/j.tsf.2003.08.021].   DOI   ScienceOn
6 D. Kim, D. Ma, N. Lee, Jpn. J. Appl. Phys. 43, 1536 (2004) [DOI: dx.doi.org/10.1143/JJAP.43.1536]   DOI
7 J. Park, J. Chae, D. Kim, J. Alloy. Comp. 478, 330 (2009) [DOI: dx.doi.org/10.1016/j.jallcom.2008.11.065].   DOI   ScienceOn
8 X. Sun, H. Huang, H. Kwok, Appl. Phys. Lett. 68, 2663 (1996) [http://dx.doi.org/10.1063/1.116274].   DOI
9 Y. S. Kim, J. H. Park, D. Kim, Vacuum. 82, 574 (2008) [DOI: dx.doi.org/10.1016/j.vacuum.2007.08.011].   DOI   ScienceOn
10 G. Haacke, J. Appl. Phys. 47, 4086 (1976) [DOI: dx.doi. org/10.1063/1.323240].   DOI   ScienceOn
11 Y. Kong, Y. Lee, S. Huh, H. Lee, M. Seo, Y. Kim, D. Kim, Kor. J. Mater. Res. 22, 24 (2012) [DOI: dx.doi.org/10.3740/MRSK.2012.22.1.024].   DOI   ScienceOn
12 S. Cho, H. Kim, Mater. Sci. Eng. B, 172, 327 (2010) [DOI: dx.doi.org/10.1016/j.mseb.2010.06.008].   DOI   ScienceOn
13 H. Yano, D. Kouro, N. Sasaki, S. Muramatsu, Sol. Ener. Mater. Sol. Cells 93, 976 (2009) [DOI: dx.doi.org/10.1016/j.optlaseng.2011.03.003].   DOI   ScienceOn
14 Z. You, J. Dong, Microelectron. J, 38, 108 (2007) [DOI: dx.doi.org/10.1016/j.mejo.2006.09.019].   DOI   ScienceOn